Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Genes Cells ; 23(4): 318-325, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29480524

RESUMEN

We developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology to isolate specific genomic regions while retaining their molecular interactions. In enChIP, the locus of interest is tagged with an engineered DNA-binding molecule, such as a modified form of the clustered regularly interspaced short palindromic repeats (CRISPR) system containing a guide RNA (gRNA) and a catalytically inactive form of Cas9 (dCas9). The locus is then affinity-purified to enable identification of associated molecules. In this study, we generated transgenic mice expressing 3xFLAG-tagged Streptococcus pyogenes dCas9 (3xFLAG-dCas9) and retrovirally transduced gRNA into primary CD4+ T cells from these mice for enChIP. Using this approach, we achieved high yields of enChIP at the targeted genomic region. Our novel transgenic mouse lines provide a valuable tool for enChIP analysis in primary mouse cells.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Inmunoprecipitación de Cromatina/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética/métodos , ARN Guía de Kinetoplastida/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Proteína 9 Asociada a CRISPR/genética , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Biochem Biophys Res Commun ; 499(2): 291-298, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577908

RESUMEN

Presence of perivascular neuroblastoma cells with high expression of hypoxia inducible factor (HIF)-2α correlates with distant metastasis and aggressive disease. Regulation of HIFs are traditionally considered to occur post-translationally, but we have recently shown that HIF-2α is unconventionally regulated also at the transcriptional level in neuroblastoma cells. Regulatory factors binding directly to EPAS1 (encoding HIF-2α) to promote transcription are yet to be defined. Here, we employ the novel CRISPR/Cas9-based engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) - mass spectrometry (MS) methodology to, in an unbiased fashion, identify proteins that associate with the EPAS1 promoter under normoxic and hypoxic conditions. Our enChIP analysis resulted in 27 proteins binding to the EPAS1 promoter in neuroblastoma cells. In agreement with a general hypoxia-driven downregulation of gene transcription, the majority (24 out of 27) of proteins dissociate from the promoter at hypoxia. Among them were several nucleosome-associated proteins suggesting a general opening of chromatin as one explanation to induced EPAS1 transcription at hypoxia. Of particular interest from the list of released factors at hypoxia was the highly divergent homeobox (HDX) transcription factor, that we show inversely correlates with HIF-2α in neuroblastoma cells. We propose a putative model where HDX negatively regulates EPAS1 expression through a release-of-inhibition mechanism.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Inmunoprecipitación de Cromatina/métodos , ADN/metabolismo , Ingeniería Genética , Proteínas de Homeodominio/metabolismo , Espectrometría de Masas/métodos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia de la Célula/genética , Línea Celular Tumoral , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Humanos , Ratones , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción/genética
3.
Int J Mol Sci ; 16(9): 21802-12, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26370991

RESUMEN

Comprehensive understanding of genome functions requires identification of molecules (proteins, RNAs, genomic regions, etc.) bound to specific genomic regions of interest in vivo. To perform biochemical and molecular biological analysis of specific genomic regions, we developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) to purify genomic regions of interest. In enChIP, specific genomic regions are tagged for biochemical purification using engineered DNA-binding molecules, such as transcription activator-like (TAL) proteins and a catalytically inactive form of the clustered regularly interspaced short palindromic repeats (CRISPR) system. enChIP is a comprehensive approach that emphasizes non-biased search using next-generation sequencing (NGS), microarrays, mass spectrometry (MS), and other methods. Moreover, this approach is not restricted to cultured cell lines and can be easily extended to organisms. In this review, we discuss applications of enChIP to elucidating the molecular mechanisms underlying genome functions.


Asunto(s)
Inmunoprecipitación de Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estudios de Asociación Genética , Ingeniería Genética , Genómica , Animales , Inmunoprecipitación de Cromatina/métodos , Estudios de Asociación Genética/métodos , Ingeniería Genética/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 16(10): 23143-64, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26404236

RESUMEN

Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas de Unión al ADN/genética , Ingeniería de Proteínas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biochem Biophys Res Commun ; 439(1): 132-6, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23942116

RESUMEN

Isolation of specific genomic regions retaining molecular interactions is necessary for their biochemical analysis. Here, we established a novel method, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), for purification of specific genomic regions retaining molecular interactions. We showed that enChIP using the CRISPR system efficiently isolates specific genomic regions. In this form of enChIP, specific genomic regions are immunoprecipitated with antibody against a tag(s), which is fused to a catalytically inactive form of Cas9 (dCas9), which is co-expressed with a guide RNA (gRNA) and recognizes endogenous DNA sequence in the genomic regions of interest. enChIP-mass spectrometry (enChIP-MS) targeting endogenous loci identified associated proteins. enChIP using the CRISPR system would be a convenient and useful tool for dissecting chromatin structure of genomic regions of interest.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/química , ADN/análisis , Espectrometría de Masas/métodos , Genómica , Células HEK293 , Humanos , Plásmidos/metabolismo , Proteómica/métodos , ARN Pequeño no Traducido
6.
Genes (Basel) ; 13(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35328026

RESUMEN

Accumulating evidence suggests that the physical interactions between genomic regions play critical roles in the regulation of genome functions, such as transcription and epigenetic regulation. Various methods to detect the physical interactions between genomic regions have been developed. We recently developed a method to search for genomic regions interacting with a locus of interest in a non-biased manner that combines pull-down of the locus using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) and next-generation sequencing (NGS) analysis (enChIP-Seq). The clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a nuclease-dead form of Cas9 (dCas9) and a guide RNA (gRNA), or transcription activator-like (TAL) proteins, can be used for enChIP. In enChIP-Seq, it is necessary to compare multiple datasets of enChIP-Seq data to unambiguously detect specific interactions. However, it is not always easy to analyze enChIP-Seq datasets to subtract non-specific interactions or identify common interactions. To facilitate such analysis, we developed the enChIP-Seq analyzer software. It enables easy extraction of common signals as well as subtraction of non-specific signals observed in negative control samples, thereby streamlining extraction of specific enChIP-Seq signals. enChIP-Seq analyzer will help users analyze enChIP-Seq data and identify physical interactions between genomic regions.


Asunto(s)
Epigénesis Genética , Genoma , Inmunoprecipitación de Cromatina/métodos , ADN , Genómica/métodos , Programas Informáticos
7.
Biol Methods Protoc ; 7(1): bpac025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325175

RESUMEN

The identification of molecules associated with a specific genomic region is essential for elucidating the molecular mechanisms underlying genome functions such as transcription. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology that enables the purification of specific genomic regions and the subsequent identification of their associated molecules. In enChIP, the target genomic region is tagged with engineered DNA-binding molecules, such as variants of the clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 (dCas9) and a guide RNA. This article describes the generation of a plasmid expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-Sp-dCas9) and its successful expression in the budding yeast, Saccharomyces cerevisiae. Furthermore, we showed that this plasmid can be used for enChIP analysis in budding yeast. In addition, the plasmid may also be a useful tool for researchers analyzing genome functions such as transcription and for CRISPR interference experiments in budding yeasts.

8.
Biol Methods Protoc ; 6(1): bpab013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409168

RESUMEN

Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology for purifying specific genomic regions to facilitate identification of their associated molecules, including proteins, RNAs, and other genomic regions. In enChIP, the target genomic region is tagged with engineered DNA-binding molecules, for example, a variant of the clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a guide RNA (gRNA) and a catalytically inactive form of Cas9 (dCas9). In this study, to increase the flexibility of enChIP and expand the range of target cells, we generated murine stem cell virus (MSCV)-based retroviral plasmids for expressing dCas9. We constructed MSCV-based retroviral plasmids expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-Sp-dCas9) and various drug resistance genes. We showed that by using these plasmids, it is feasible to purify target genomic regions with yields comparable to those reported using other systems. These systems might give enChIP users greater flexibility in choosing optimal systems for drug selection of transduced cells.

9.
Biol Methods Protoc ; 4(1): bpz008, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32395626

RESUMEN

In 2013, we developed a new method of engineered DNA-binding molecule-mediated chromatin immunoprecipitation that incorporates the clustered regularly interspaced short palindromic repeats (CRISPR) system to purify specific DNA species. This CRISPR-mediated purification can be performed in-cell or in vitro; CRISPR complexes can be expressed to tag target DNA sequences in the cells to be analyzed, or a CRISPR ribonucleoprotein complex consisting of recombinant nuclease-dead Cas9 (dCas9) and synthetic guide RNA can be used to tag target DNA sequences in vitro. Both methods enable purification of specific DNA sequences in chromatin structures for subsequent identification of molecules (proteins, RNAs, and other genomic regions) associated with the target sequences. The in vitro method also enables enrichment of purified DNA sequences from a pool of heterogeneous sequences for next-generation sequencing or other applications. In this review, we outline the principle of CRISPR-mediated purification of specific DNA species and discuss recent advances in the technology.

10.
BMC Res Notes ; 11(1): 154, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482606

RESUMEN

OBJECTIVE: Previously, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology, which isolates specific genomic regions while preserving their molecular interactions. In enChIP, the locus of interest is tagged with engineered DNA-binding molecules such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically inactive form of Cas9 (dCas9) and guide RNA, followed by affinity purification of the tagged locus to allow identification of associated molecules. In our previous studies, we used a 3xFLAG-tagged CRISPR system from Streptococcus pyogenes (S. pyogenes). In this study, to increase the flexibility of enChIP, we used the CRISPR system from Staphylococcus aureus (S. aureus) along with different epitope tags. RESULTS: We generated a plasmid expressing S. aureus dCas9 (Sa-dCas9) fused to a nuclear localization signal (NLS) and a 3xFLAG-tag (Sa-dCas9-3xFLAG). The yields of enChIP using Sa-dCas9-3xFLAG were comparable to those using S. pyogenes dCas9 fused with an NLS and a 3xFLAG-tag (3xFLAG-Sp-dCas9). We also generated another enChIP system using Sp-dCas9 fused with an NLS and a 2xAM-tag (Sp-dCas9-2xAM). We obtained high enChIP yields using this system as well. Our findings indicate that these tools will increase the flexibility of enChIP analysis.


Asunto(s)
Sistemas CRISPR-Cas , Inmunoprecipitación de Cromatina/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Epítopos , Staphylococcus aureus/genética
11.
BMC Res Notes ; 11(1): 387, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29898790

RESUMEN

OBJECTIVE: The engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology enables purification of specific genomic regions interacting with their associated molecules. In enChIP, the locus to be purified is first tagged with engineered DNA-binding molecules. An example of such engineered DNA-binding molecules to tag the locus of interest is the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically-inactive form of Cas9 (dCas9) and guide RNA (gRNA). Subsequently, the tagged locus is subjected to affinity purification for identification of interacting molecules. In our previous studies, we developed enChIP systems for analysis of mammalian genome functions. Here, we developed an enChIP system to analyze bacterial genome functions. RESULTS: We generated a plasmid inducibly expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-dCas9) in bacteria. Inducible expression of 3xFLAG-dCas9 in Escherichia coli was confirmed by immunoblot analysis. We were able to purify specific genomic regions of E. coli preserving their molecular interactions. The system is potentially useful for analysis of interactions between specific genomic regions and their associated molecules in bacterial cells to understand genome functions such as transcription, DNA repair, and DNA recombination.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Plásmidos
12.
Bio Protoc ; 7(22): e2612, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34595285

RESUMEN

We have developed locus-specific chromatin immunoprecipitation (locus-specific ChIP) technologies consisting of insertional ChIP (iChIP) and engineered DNA-binding molecule-mediated ChIP (enChIP). Locus-specific ChIP is a method to isolate a genomic region of interest from cells while it also identifies what binds to this region using mass spectrometry (for protein) or next generation sequencing (for RNA or DNA) as described in Fujita et al. (2016a). Recently, we identified genomic regions that physically interact with a locus using an updated form of enChIP, in vitro enChIP, in combination with NGS (in vitro enChIP-Seq) ( Fujita et al., 2017a ). Here, we describe a protocol on in vitro enChIP to isolate a target locus for identification of genomic regions that physically interact with the locus.

13.
DNA Res ; 24(5): 537-548, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28586432

RESUMEN

Chromosomal interactions regulate genome functions, such as transcription, via dynamic chromosomal organization in the nucleus. In this study, we attempted to identify genomic regions that physically bind to the promoter region of the Pax5 gene, which encodes a master regulator for B cell lineage commitment, in a chicken B cell line, DT40, with the goal of obtaining mechanistic insight into transcriptional regulation through chromosomal interaction. We found that the Pax5 promoter bound to multiple genomic regions using locus-specific chromatin immunoprecipitation (locus-specific ChIP), a method for locus-specific isolation of target genomic regions, in combination with next-generation sequencing (NGS). Comparing chromosomal interactions in wild-type DT40 with those in a macrophage-like counterpart, we found that some of the identified chromosomal interactions were organized in a B cell-specific manner. In addition, deletion of a B cell-specific interacting genomic region in chromosome 11, which was marked by active enhancer histone modifications, resulted in moderate but significant down-regulation of Pax5 transcription. Together, these results suggested that Pax5 transcription in DT40 is regulated by B cell-specific inter-chromosomal interactions. Moreover, these analyses showed that locus-specific ChIP combined with NGS analysis is useful for non-biased identification of functional genomic regions that physically interact with a locus of interest.


Asunto(s)
Linfocitos B/metabolismo , Pollos/metabolismo , Factor de Transcripción PAX5/genética , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Proteínas Aviares/genética , Línea Celular , Pollos/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
14.
Gene Regul Syst Bio ; 10(Suppl 1): 1-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819551

RESUMEN

To isolate specific genomic regions that retain their molecular interactions, allowing direct identification of chromatin-bound molecules, we developed two locus-specific chromatin immunoprecipitation (locus-specific ChIP) technologies, insertional ChIP (iChIP) and engineered DNA-binding molecule-mediated ChIP (enChIP) using the clustered regularly interspaced short palindromic repeats (CRISPR) system or transcription activator-like (TAL) proteins. Essentially, a locus-specific ChIP consists of locus-tagging and affinity purification and can be combined with downstream analyses to identify molecules associated with the target genomic regions. In this review, we discuss the applications of locus-specific ChIP to analyze the genome functions, including transcription and epigenetic regulation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda