RESUMEN
In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.
Asunto(s)
ADN Glicosilasas , Reparación del ADN , Daño del ADN , ADN/genética , ADN/metabolismo , ADN Glicosilasas/metabolismoRESUMEN
In this issue of the Journal of Bacteriology, N. J. Bonde, E. A. Wood, K. S. Myers, M. Place, J. L. Keck, and M. M. Cox (J Bacteriol 205:e00184-23, 2023, https//doi.org/10.1128/jb.00184-23) used an unbiased transposon-sequencing (Tn-seq) screen to identify proteins required for life when cells lose the RecG branched-DNA helicase (synthetic lethality). The proteins' identities indicate pathways that prevent endogenous DNA damage, pathways that prevent its homology-directed repair (HDR) "strand-exchange" intermediates between sister chromosomes, and pathways that resolve those intermediates. All avoid intermediate pile-up, which blocks chromosome segregation, causing "death-by-recombination." DNA damage is managed to regulate crucial but potentially lethal HDR.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Reparación del ADN , Recombinación Genética , ADN Helicasas/genéticaRESUMEN
Antiphospholipid syndrome (APS) is a rare autoimmune disorder with complex pathogenesis. Studies have shown that oxidative stress may contribute to APS pathophysiology. In peripheral blood mononuclear cells (PBMCs) from thrombotic Primary APS (thrPAPS) patients and age/sex-matched healthy controls (HC), as well as a control group of asymptomatic antiphospholipid antibody (aPL) positive individuals without APS (aPL+/non-APS), we examined oxidative stress, abasic (apurinic/apyrimidinic) sites, and DNA damage response (DDR)-associated parameters, including endogenous DNA damage (single- and double-strand breaks) and DNA repair mechanisms, namely nucleotide excision repair (NER) and double-strand breaks repair (DSB/R). We found that thrPAPS patients exhibited significantly higher levels of endogenous DNA damage, increased oxidative stress and abasic sites, as well as lower NER and DSB/R capacities versus HC (all P < 0.001) and versus aPL+/non-APS subjects (all P < 0.05). Our findings demonstrate that oxidative stress and decreased DNA repair mechanisms contribute to the accumulation of endogenous DNA damage in PBMCs from thrPAPS patients and, if further validated, may be exploited as therapeutic targets and potential biomarkers.
Asunto(s)
Síndrome Antifosfolípido , Trombosis , Humanos , Leucocitos Mononucleares , Reparación del ADN , Estrés Oxidativo , Trombosis/etiología , Daño del ADNRESUMEN
Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (rs = 0.41, p = 0.11), a linear relationship was observed after 50 years (r = 0.95, p < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all p < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.
Asunto(s)
Roturas del ADN de Doble Cadena , Leucocitos Mononucleares , Masculino , Humanos , Femenino , Persona de Mediana Edad , Leucocitos Mononucleares/fisiología , Estudios Prospectivos , Daño del ADN , Envejecimiento/genética , Reparación del ADNRESUMEN
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Asunto(s)
Daño del ADN , Reparación del ADN , Mutación , Metilación de ADNRESUMEN
We investigated the DNA damage response and repair network in 18 patients with active rheumatoid arthritis and tested the hypothesis that treatment influences this network. A 3-fold increase of endogenous DNA damage (single- and double-strand breaks) was detected in patient-derived peripheral blood mononuclear cells than controls (alkaline comet assay; mean⯱â¯SD Olive Tail Moment of 11.8⯱â¯7.3 versus 4.3⯱â¯2.2, pâ¯<â¯.001). Patients exhibited significantly higher formation of DNA damage (oxidative stress and abasic sites), deficient global genome repair and more condensed chromatin structure than controls. Twelve weeks following treatment, chromatin structure loosened, global genome repair capacity was restored, oxidative stress and abasic sites decreased and levels of endogenous DNA damage reached control values in all 8 patients examined. We conclude that deregulated chromatin organization, deficient DNA repair capacity and augmented formation of DNA damage, which are reversible after treatment, contribute to the accumulation of endogenous DNA damage in rheumatoid arthritis.
Asunto(s)
Artritis Reumatoide/genética , Cromatina/genética , Leucocitos Mononucleares/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Ensayo Cometa , Daño del ADN , Reparación del ADN , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/genéticaRESUMEN
Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.
Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , HumanosRESUMEN
The major mammalian apurinic/apyrimidinic endonuclease Ape1 is a multifunctional protein operating in protection of cells from oxidative stress via its DNA repair, redox, and transcription regulatory activities. The importance of Ape1 has been marked by previous work demonstrating its requirement for viability in mammalian cells. However, beyond a requirement for Ape1-dependent DNA repair activity, deeper molecular mechanisms of the fundamental role of Ape1 in cell survival have not been defined. Here, we report that Ape1 is an essential factor stabilizing telomeric DNA, and its deficiency is associated with telomere dysfunction and segregation defects in immortalized cells maintaining telomeres by either the alternative lengthening of telomeres pathway (U2OS) or telomerase expression (BJ-hTERT), or in normal human fibroblasts (IMR90). Through the expression of Ape1 derivatives with site-specific changes, we found that the DNA repair and N-terminal acetylation domains are required for the Ape1 function at telomeres. Ape1 associates with telomere proteins in U2OS cells, and Ape1 depletion causes dissociation of TRF2 protein from telomeres. Consistent with this effect, we also observed that Ape1 depletion caused telomere shortening in both BJ-hTERT and in HeLa cells. Thus, our study describes a unique and unpredicted role for Ape1 in telomere protection, providing a direct link between base excision DNA repair activities and telomere metabolism.
Asunto(s)
Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Homeostasis del Telómero/genética , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Telomerasa/metabolismo , Homeostasis del Telómero/fisiologíaRESUMEN
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.
RESUMEN
Utilization of faeces has long been a popular approach for genetic and ecological studies of wildlife. However, the success of molecular marker genotyping and genome resequencing is often unpredictable due to insufficient enrichment of endogenous DNA in the total faecal DNA that is dominated by bacterial DNA. Here, we report a simple and cheap method named PEERS to predominantly lyse animal cells over bacteria by using sodium dodecyl sulphate so as to discharge endogenous DNA into liquid phase before bacterial DNA. By brief centrifugation, total DNA with enriched endogenous fraction can be extracted from the supernatant using routine methods. Our assessments showed that the endogenous DNA extracted by PEERS was significantly enriched for various types of faeces from different species, preservation time and conditions. It significantly improves the genotyping correctness and efficiency of genome resequencing with the total additional cost of $ 0.1 and a short incubation step to treat a faecal sample. We also provide methods to assess the enrichment efficiency of mitochondrial and nuclear DNA and models to predict the usability of faecal DNA for genotyping of short tandem repeat, single-nucleotide polymorphism and whole-genome resequencing.
Asunto(s)
ADN , Mamíferos , Animales , ADN Bacteriano/genética , ADN/genética , Heces , Mamíferos/genética , Animales Salvajes/genéticaRESUMEN
Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.
Asunto(s)
Reprogramación Celular , Daño del ADN , Transcripción Genética , Humanos , Animales , Reparación del ADN , Diferenciación Celular , Inestabilidad GenómicaRESUMEN
The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.
RESUMEN
Contamination with microbial and other exogenous DNA poses a significant challenge in the generation of genome-wide sequence data from ancient skeletal remains. Here we describe a method for separating ancient DNA into multiple fractions during DNA extraction by sequential temperature-controlled release of DNA into sodium phosphate buffer. An evaluation of the effectiveness of the method using a set of three ancient bones resulted in between 1.6- and 32-fold enrichment of endogenous DNA compared with regular DNA extraction. For two bones, the method outperformed previous methods of decontaminating ancient bones, including hypochlorite treatment, which resulted in near-complete destruction of DNA in the worst-preserved sample. This extraction method expands the spectrum of methods available for depleting contaminant DNA from ancient skeletal remains.
Asunto(s)
Restos Mortales , Huesos , ADN Antiguo , ADN Antiguo/aislamiento & purificación , Humanos , TemperaturaRESUMEN
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , Animales , HumanosRESUMEN
The integrity of the genetic information is continuously challenged by numerous genotoxic insults, most frequently in the form of oxidation, alkylation or deamination of the bases that result in DNA damage. These damages compromise the fidelity of the replication, and interfere with the progression and function of the transcription machineries. The DNA damage response (DDR) comprises a series of strategies to deal with DNA damage, including transient transcriptional inhibition, activation of DNA repair pathways and chromatin remodeling. Coordinated control of transcription and DNA repair is required to safeguardi cellular functions and identities. Here, we address the cellular responses to endogenous DNA damage, with a particular focus on the role of DNA glycosylases and the Base Excision Repair (BER) pathway, in conjunction with the DDR factors, in responding to DNA damage during the transcription process. We will also discuss functions of newly identified epigenetic and regulatory marks, such as 5-hydroxymethylcytosine and its oxidative products and 8-oxoguanine, that were previously considered only as DNA damages. In light of these resultsthe classical perception of DNA damage as detrimental for cellular processes are changing. and a picture emerges whereDNA glycosylases act as dynamic regulators of transcription, placing them at the intersection of DNA repair and gene expression modulation.
Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Epigénesis Genética , 5-Metilcitosina/análogos & derivados , Animales , ADN/metabolismo , Regulación de la Expresión Génica , Guanina/análogos & derivados , HumanosRESUMEN
BACKGROUND: We sought to determine whether DNA damage response (DDR)-related aberrations predict therapeutic benefit in cisplatin-treated head and neck squamous cell carcinoma (HNSCC) patients and how DDR pathways are modulated after treatment with olaparib alone or in combination with cisplatin or durvalumab. PATIENTS AND METHODS: Oxidative stress, abasic sites and DDR-related parameters, including endogenous DNA damage, DNA repair mechanisms and apoptosis rates, were evaluated in HNSCC cell lines and peripheral blood mononuclear cells from 46 healthy controls (HC) and 70 HNSCC patients at baseline and following treatment with cisplatin-containing chemoradiation or nivolumab or enrolled in the OPHELIA phase II trial (NCT02882308; olaparib alone, olaparib plus cisplatin, olaparib plus durvalumab). RESULTS: HNSCC patients at diagnosis exhibited deregulated DDR-related parameters and higher levels of oxidative stress and abasic sites compared with HC (all P < 0.05). Accordingly, nucleotide excision repair (NER; ERCC1, ERCC2/XPD, XPA, XPC) and base excision repair (APEX1, XRCC1) genes were downregulated in patients versus HC whereas double-strand breaks repair (MRE11A, RAD50, RAD51, XRCC2) and mismatch repair (MLH1, MSH2, MSH3) genes were overexpressed. Corresponding results were obtained in cell lines (all P < 0.001). Excellent correlations were observed between individual ex vivo and in vivo/therapeutic results, with cisplatin non-responders showing higher levels of endogenous DNA damage, augmented oxidative stress and abasic sites, increased NER capacities and reduced apoptosis than responders (all P < 0.05). Also, longer progression-free survival correlated with lower NER capacity (P = 0.037) and increased apoptosis (P = 0.029). Interestingly, treatment with olaparib-containing regimens results in the accumulation of cytotoxic DNA damage and exerts an extra antitumor effect by elevating oxidative stress (all P < 0.05). Nivolumab induced no significant changes in the DDR parameters examined. CONCLUSIONS: Aberrations in DDR signals are implicated in the response to HNSCC chemotherapy and can be exploited as novel therapeutic targets, sensitive/effective non-invasive biomarkers as well as for the design of novel clinical trials.
Asunto(s)
Neoplasias de Cabeza y Cuello , Leucocitos Mononucleares , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína de la Xerodermia Pigmentosa del Grupo DRESUMEN
INTRODUCTION: Many clinical and pre-clinical studies suggested the protective effect of vitamin D against cancer development and cancer progression. Vitamin D deficiency is highly prevalent worldwide, and its link to DNA damage is worthy to study. It has been shown that vitamin D supplementation can reduce the risk of cancer with a favorable prognosis. Studies on DNA damage in different types of cancer and its link to plasma vitamin D has not been found in literature. PATIENTS AND METHODS: In this study we included 45 patients with different types of cancers and 35 healthy individuals as controls. The plasma vitamin D levels were measured in all participants. DNA damage levels of peripheral blood (mononuclear) cells in 45 newly diagnosed and untreated cancer patients and in 35 healthy individuals were measured using Alkaline Comet Assay technique. RESULTS: The DNA damage observed in cancer patients was significantly higher than in healthy individuals. Interestingly, we have found a significant inverse correlation between the plasma levels of vitamin D and DNA damage in cancer patients (p < 0.0001) and in healthy individuals (p < 0.001). CONCLUSION: There is an inverse association between endogenous DNA damage and plasma vitamin D levels. Patients with vitamin D deficiency show highest levels of DNA damage suggesting that deficiency of vitamin D is probably one of the factors which increases the risk of cancer.
RESUMEN
Shotgun metagenomics applied to archaeological feces (paleofeces) can bring new insights into the composition and functions of human and animal gut microbiota from the past. However, paleofeces often undergo physical distortions in archaeological sediments, making their source species difficult to identify on the basis of fecal morphology or microscopic features alone. Here we present a reproducible and scalable pipeline using both host and microbial DNA to infer the host source of fecal material. We apply this pipeline to newly sequenced archaeological specimens and show that we are able to distinguish morphologically similar human and canine paleofeces, as well as non-fecal sediments, from a range of archaeological contexts.
RESUMEN
Previously, we reported that persistent DNA damage accelerates ageing of the spine, but the mechanisms behind this process are not well understood. Ataxia telangiectasia mutated (ATM) is a protein kinase involved in the DNA damage response, which controls cell fate, including cell death. To test the role of ATM in the human intervertebral disc, we exposed human nucleus pulposus (hNP) cells directly to the DNA damaging agent cisplatin. Cisplatin-treated hNP cells exhibited rapid phosphorylation of ATM and subsequent increased NF-κB activation, aggrecanolysis, decreased total proteoglycan production and increased expression of markers of senescence, including p21, γH2 AX and SA-ß-gal. Treating cisplatin-exposed hNP cells with an ATM-specific inhibitor negated these effects. In addition, genetic reduction of ATM reduced disc cellular senescence and matrix proteoglycan loss in the progeroid Ercc1-/∆ mouse model of accelerated ageing. These findings suggest that activation of ATM signalling under persistent genotoxic stress promotes disc cellular senescence and matrix homeostatic perturbation. Thus, the ATM signalling pathway represents a therapeutic target to delay the progression of age-associated spine pathologies.
Asunto(s)
Ataxia Telangiectasia/etiología , Ataxia Telangiectasia/genética , Daño del ADN/genética , Degeneración del Disco Intervertebral/complicaciones , Envejecimiento , Animales , Ataxia Telangiectasia/patología , Humanos , Ratones , Transducción de SeñalRESUMEN
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence-associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1-XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15-fold in peripheral lymphocytes from 4- to 5-month-old Ercc1-/∆ and 2.5-year-old wild-type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4- to 5-month-old Ercc1-/∆ mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence-associated ß-galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1-/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1-/∆ and aged WT mice support the conclusion that the DNA repair-deficient mice accurately model the age-related accumulation of senescent cells, albeit six-times faster.