Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.738
Filtrar
Más filtros

Publication year range
1.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570999

RESUMEN

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno/metabolismo , NAD/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Microvasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Physiol Rev ; 103(3): 1693-1787, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603158

RESUMEN

Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."


Asunto(s)
Distinciones y Premios , Entrenamiento de Fuerza , Humanos , Atletas , Ejercicio Físico/fisiología , Adaptación Fisiológica , Músculo Esquelético , Resistencia Física
3.
Trends Genet ; 40(9): 736-738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003156

RESUMEN

The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to comprehensively map molecular alterations in response to acute exercise and chronic training. In one of a recent series of papers from MoTrPAC, Nair et al. provide the first multi-epigenomic and transcriptomic integration across eight tissues in both sexes following adaptation to endurance exercise training (EET).


Asunto(s)
Entrenamiento Aeróbico , Ejercicio Físico , Humanos , Epigénesis Genética , Resistencia Física/genética , Masculino , Femenino , Transcriptoma/genética
4.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38946541

RESUMEN

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Asunto(s)
Tolerancia al Ejercicio , Transportador de Glucosa de Tipo 1 , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/genética , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo
5.
Circulation ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101218

RESUMEN

BACKGROUND: Bradycardia is more common among well-trained athletes than in the general population, but the association with pacemaker implantations is less known. We investigated associations of endurance training with incidence of bradycardia and pacemaker implantations, including sex differences and long-term outcome, in a cohort of endurance trained individuals. METHODS: All Swedish skiers who completed >1 race in the cross-country skiing event Vasaloppet between 1989 and 2011 (n=209 108) and a sample of 532 290 nonskiers were followed until first event of bradycardia, pacemaker implantation, or death, depending on end point. The Swedish National Patient Register was used to obtain diagnoses. Cox regression was used to investigate associations of number of completed races and finishing time in Vasaloppet with incidence of bradycardia and pacemaker implantations. In addition, Cox regression was used to investigate associations of pacemaker implantations with death in skiers and nonskiers. RESULTS: Male skiers had a higher incidence of bradycardia (adjusted hazard ratio [aHR], 1.19 [95% CI, 1.05-1.34]) and pacemaker implantations (aHR, 1.17 [95% CI, 1.04-1.31]) compared with male nonskiers. Those who completed the most races and had the best performances exhibited the highest incidence. For female skiers in Vasaloppet, the incidence of bradycardia (aHR, 0.98 [95% CI, 0.75-1.30]) and pacemaker implantations (aHR, 0.98 [95% CI, 0.75-1.29]) was not different from that of female nonskiers. The indication for pacemaker differed between skiers and nonskiers, with sick sinus syndrome more common in the former and third-degree atrioventricular block in the latter. Skiers had lower overall mortality rates than nonskiers (aHR, 0.16 [95% CI, 0.15-0.17]). There were no differences in mortality rates by pacemaker status among skiers. CONCLUSIONS: In this study, male endurance skiers had a higher incidence of bradycardia and pacemaker implantations compared with nonskiers, a pattern not seen in women. Among male skiers, those who completed the most races and had the fastest finishing times had the highest incidence of bradycardia and pacemaker implantations. Within each group, mortality rates did not differ in relation to pacemaker status. These findings suggest that bradycardia associated with training leads to a higher risk for pacemaker implantation without a detrimental effect on mortality risk.

6.
Hum Genomics ; 18(1): 47, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760851

RESUMEN

Association between genomic variants and athletic performance has seen a high degree of controversy, as there is often conflicting data as far as the association of genomic variants with endurance, speed and strength is concerned. Here, findings from a thorough meta-analysis from 4228 articles exploring the association of genomic variants with athletic performance in power and endurance sports are summarized, aiming to confirm or overrule the association of genetic variants with athletic performance of all types. From the 4228 articles, only 107 were eligible for further analysis, including 37 different genes. From these, there were 21 articles for the ACE gene, 29 articles for the ACTN3 gene and 8 articles for both the ACE and ACTN3 genes, including 54,382 subjects in total, from which 11,501 were endurance and power athletes and 42,881 control subjects. These data show that there is no statistically significant association between genomic variants and athletic performance either for endurance or power sports, underlying the fact that it is highly risky and even unethical to make such genetic testing services for athletic performance available to the general public. Overall, a strict regulatory monitoring should be exercised by health and other legislative authorities to protect the public from such services from an emerging discipline that still lacks the necessary scientific evidence and subsequent regulatory approval.


Asunto(s)
Actinina , Rendimiento Atlético , Genómica , Resistencia Física , Humanos , Resistencia Física/genética , Actinina/genética , Peptidil-Dipeptidasa A/genética , Atletas , Deportes , Variación Genética/genética
7.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494416

RESUMEN

Previous research has confirmed significant differences in regional brain activity and functional connectivity between endurance athletes and non-athletes. However, no studies have investigated the differences in topological efficiency of the brain functional network between endurance athletes and non-athletes. Here, we compared differences in regional activities, functional connectivity, and topological properties to explore the functional basis associated with endurance training. The results showed significant correlations between Regional Homogeneity in the motor cortex, visual cortex, cerebellum, and the training intensity parameters. Alterations in functional connectivity among the motor cortex, visual cortex, cerebellum, and the inferior frontal gyrus and cingulate gyrus were significantly correlated with training intensity parameters. In addition, the graph theoretical analysis results revealed a significant reduction in global efficiency among athletes. This decline is mainly caused by decreased nodal efficiency and nodal local efficiency of the cerebellar regions. Notably, the sensorimotor regions, such as the precentral gyrus and supplementary motor areas, still exhibit increased nodal efficiency and nodal local efficiency. This study not only confirms the improvement of regional activity in brain regions related to endurance training, but also offers novel insights into the mechanisms through which endurance athletes undergo changes in the topological efficiency of the brain functional network.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Giro del Cíngulo , Atletas
8.
Proc Natl Acad Sci U S A ; 119(18): e2200549119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35482926

RESUMEN

Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.


Asunto(s)
Enfermedades Mitocondriales , Condicionamiento Físico Animal , Animales , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética
9.
J Physiol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162309

RESUMEN

The human heart is very adaptable, with chamber size, wall thickness and ventricular stiffness all modified by periods of inactivity or exercise training. Herein, we summarize the cardiac adaptations induced by changes in physical activity, ranging from bed rest and spaceflight to endurance exercise training, while also highlighting how the ageing process (a long-term model of inactivity) affects cardiac plasticity. Severe inactivity during bed rest or spaceflight leads to cardiac atrophy and ventriculo-vascular stiffening. Conversely, endurance training induces eccentric hypertrophy and enhances ventricular compliance, and can be used as an effective countermeasure to prevent adverse cardiac changes during prolonged periods of bed rest or spaceflight. With sedentary ageing, the heart undergoes concentric remodelling and irreversibly stiffens at advanced age. Specifically, older adults who initiate endurance training later in life are unable to improve ventricular compliance and diastolic function, suggesting reduced cardiac plasticity with advanced age; however, lifelong exercise training prevents age-associated cardiac remodelling and maintains cardiac compliance of older adults at a level similar to those of younger healthy individuals. Nevertheless, there are still many knowledge gaps related to cardiac remodelling and changes in cardiac function induced by bed rest, exercise training and spaceflight, as well as how these different stimuli may interact with advancing age. Future studies should focus on understanding what factors (sex, age, heritability, etc.) may influence the heart's responsiveness to training or deconditioning, as well as understanding the long-term cardiac consequences of spaceflight beyond low-Earth orbit with the added stimulus of galactic cosmic radiation.

10.
J Physiol ; 602(15): 3641-3660, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980963

RESUMEN

Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.


Asunto(s)
Desmina , Distrofina , Músculo Esquelético , Condicionamiento Físico Animal , Carrera , Animales , Masculino , Ratones , Desmina/genética , Desmina/metabolismo , Distrofina/genética , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Carrera/fisiología
11.
J Physiol ; 602(17): 4129-4156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106346

RESUMEN

Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of 'real-world data' and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.


Asunto(s)
Caracteres Sexuales , Humanos , Femenino , Masculino , Hormonas Esteroides Gonadales/metabolismo , Rendimiento Físico Funcional , Rendimiento Atlético/fisiología
12.
J Biol Chem ; 299(11): 105281, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742921

RESUMEN

Skeletal muscle consists of different muscle fiber types whose heterogeneity is characterized by different metabolic patterns and expression of MyHC isomers. The transformation of muscle fiber types is regulated by a complex molecular network in which long noncoding (lnc) RNAs play an important role. In this study, we found that lnc-H19 is more enriched in slow muscle fibers. In vitro, interference of lnc-H19 by siRNA significantly promoted the expression of fast muscle fiber gene MyHC IIB and inhibited the expression of the slow muscle fiber gene MyHC I, thereby leading to a fast muscle fiber phenotype. In addition, interference of lnc-H19 significantly inhibited mRNA expression of the mitochondrial genes, such as COX5A, COX-2, UQCRFSL, FABP3, and CD36. Overexpression of lnc-H19 resulted in an opposite result. In vivo, knockdown of lnc-H19 by AAV-shRNA-H19 suppressed the mRNA expression of the slow muscle fiber gene MyHC I and the protein expression of slow-MyHC. Simultaneously, mitochondria were reduced in number, swollen, and vacuolated. The activities of succinate dehydrogenase, lactic dehydrogenase, and superoxide dismutase were significantly inhibited, and malondialdehyde content was significantly increased, indicating that deficiency of lnc-H19 leads to decreased oxidative metabolism and antioxidant capacity in muscle. Furthermore, inhibition of lnc-H19 decreased the weight-bearing swimming time and limb suspension time of mice. In conclusion, our results revealed the role of lnc-H19 in maintaining slow muscle fiber types and maintaining exercise endurance, which may help to further improve the regulatory network of lnc-H19 in muscle function.


Asunto(s)
ARN Largo no Codificante , Animales , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Masculino , Línea Celular , Ratones Endogámicos C57BL
13.
J Cell Biochem ; : e30630, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014907

RESUMEN

There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.

14.
Ann Hum Genet ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949054

RESUMEN

INTRODUCTION: The phenotypic consequences of the p.Arg577Ter variant in the α-actinin-3 (ACTN3) gene are suggestive of a trade-off between performance traits for speed and endurance sports. Although there is a consistent association of the c.1729C allele (aka R allele) with strength/power traits, there is still a debate on whether the null allele (c.1729T allele; aka X allele) influences endurance performance. The present study aimed to test the association of the ACTN3 p.Arg577Ter variant with long-distance endurance athlete status, using previously published data with the Brazilian population. METHODS: Genotypic data from 203 long-distance athletes and 1724 controls were analysed in a case-control approach. RESULTS: The frequency of the X allele was significantly higher in long-distance athletes than in the control group (51.5% vs. 41.4%; p = 0.000095). The R/X and X/X genotypes were overrepresented in the athlete group. Individuals with the R/X genotype instead of the R/R genotype had a 1.6 increase in the odds of being a long-distance athlete (p = 0.012), whereas individuals with the X/X genotype instead of the R/R genotype had a 2.2 increase in the odds of being a long-distance athlete (p = 0.00017). CONCLUSION: The X allele, mainly the X/X genotype, was associated with long-distance athlete status in Brazilians.

15.
Blood Cells Mol Dis ; 107: 102853, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574498

RESUMEN

Sickle cell disease (SCD) is an hemoglobinopathy resulting in the production of an abnormal Hb (HbS) which can polymerize in deoxygenated conditions, leading to the sickling of red blood cells (RBC). These alterations can decrease the oxygen-carrying capacity leading to impaired function and energetics of skeletal muscle. Any strategy which could reverse the corresponding defects could be of interest. In SCD, endurance training is known to improve multiples muscle properties which restores patient's exercise capacity but present reduced effects in anemic patients. Hydroxyurea (HU) can increase fetal hemoglobin production which can reduce anemia in patients. The present study was conducted to determine whether HU can improve the effects of endurance training to improve muscle function and energetics. Twenty SCD Townes mice have been trained for 8 weeks with (n = 11) or without (n = 9) HU. SCD mice muscle function and energetics were analyzed during a standardized rest-exercise-recovery protocol, using Phosphorus-31 Magnetic resonance spectroscopy (31P-MRS) and transcutaneous stimulation. The combination of training and HU specifically decreased fatigue index and PCr consumption while muscle oxidative capacity was improved. These results illustrate the potential synergistic effects of endurance training and HU on muscle function and energetics in sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Metabolismo Energético , Hidroxiurea , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Anemia de Células Falciformes/tratamiento farmacológico , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Entrenamiento Aeróbico , Modelos Animales de Enfermedad , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico
16.
J Nutr ; 154(9): 2707-2716, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053609

RESUMEN

BACKGROUND: Endurance is an important capacity to sustain healthy lifestyles. Aged garlic extract (AGE) has been reported to exert an endurance-enhancing effect in clinical and animal studies, although little is known about its active ingredients and mechanism of action. OBJECTIVES: This study investigated the potential effect of S-1-propenylcysteine (S1PC), a characteristic sulfur amino acid in AGE, on the swimming endurance of mice, and examined its mechanism of action by a metabolomics-based approach. METHODS: Male Institute of Cancer Research (ICR) mice (6 wk old) were orally administered either water (control) or S1PC (6.5 mg/kg/d) for 2 wk. The swimming duration to exhaustion was measured at 24 h after the final administration. Nontargeted metabolomic analysis was conducted on the plasma samples obtained from mice after 40-min submaximal swimming bouts. Subsequently, the enzyme activity of carnitine acyltransferase-1 (CPT-1) and the content of malonyl-coenzyme A (CoA), acetyl-CoA, and adenosine triphosphate (ATP) were quantified in heart, skeletal muscles, and liver of mice. RESULTS: The duration time of swimming was substantially increased in the S1PC-treated mice as compared with the control group. Metabolomic analysis revealed significant alterations in the plasma concentration of the metabolites involved in fatty acid metabolism, in particular medium- or long-chain acylcarnitines in the mice treated with S1PC. Moreover, the administration of S1PC significantly enhanced the CPT-1 activity with the concomitant decrease in the malonyl-CoA content in the heart and skeletal muscles. These effects of S1PC were accompanied by the elevation of the acetyl-CoA and ATP levels to enhance the energy production in those tissues. CONCLUSIONS: S1PC is a key constituent responsible for the endurance-enhancing effect of AGE. This study suggests that S1PC helps provide energy during endurance exercise by increasing fatty acid metabolism via CPT-1 activation in the heart and skeletal muscles.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Cisteína , Ácidos Grasos , Músculo Esquelético , Resistencia Física , Natación , Animales , Masculino , Ratones , Carnitina O-Palmitoiltransferasa/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacología , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Miocardio/metabolismo , Resistencia Física/efectos de los fármacos
17.
Calcif Tissue Int ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066926

RESUMEN

To explore how sex hormone fluctuations may affect bone metabolism, this study aimed to examine P1NP and ß-CTX-1 concentrations across the menstrual and oral contraceptive (OC) cycle phases in response to running. 17ß-oestradiol, progesterone, P1NP and ß-CTX-1 were analysed pre- and post-exercise in eight eumenorrheic females in the early-follicular, late-follicular, and mid-luteal phases, while 8 OC users were evaluated during the withdrawal and active pill-taking phases. The running protocol consisted of 8 × 3min treadmill runs at 85% of maximal aerobic speed. 17ß-oestradiol concentrations (pg·ml-1) were lower in early-follicular (47.22 ± 39.75) compared to late-follicular (304.95 ± 235.85;p = < 0.001) and mid-luteal phase (165.56 ± 80.6;p = 0.003) and higher in withdrawal (46.51 ± 44.09) compared to active pill-taking phase (10.88 ± 11.24;p < 0.001). Progesterone (ng·ml-1) was higher in mid-luteal (13.214 ± 4.926) compared to early-follicular (0.521 ± 0.365; p < 0.001) and late-follicular phase (1.677 ± 2.586;p < 0.001). In eumenorrheic females, P1NP concentrations (ng·ml-1) were higher in late-follicular (69.97 ± 17.84) compared to early-follicular (60.96 ± 16.64;p = 0.006;) and mid-luteal phase (59.122 ± 11.77;p = 0.002). ß-CTX-1 concentrations (ng·ml-1) were lower in mid-luteal (0.376 ± 0.098) compared to late-follicular (0.496 ± 0.166; p = 0.001) and early-follicular phase (0.452 ± 0.148; p = 0.039). OC users showed higher post-exercise P1NP concentrations in withdrawal phase (61.75 ± 8.32) compared to post-exercise in active pill-taking phase (45.45 ± 6;p < 0.001). Comparing hormonal profiles, post-exercise P1NP concentrations were higher in early-follicular (66.91 ± 16.26;p < 0.001), late-follicular (80.66 ± 16.35;p < 0.001) and mid-luteal phases (64.57 ± 9.68;p = 0.002) to active pill-taking phase. These findings underscore the importance of studying exercising females with different ovarian hormone profiles, as changes in sex hormone concentrations affect bone metabolism in response to running, showing a higher post-exercise P1NP concentrations in all menstrual cycle phases compared with active pill-taking phase of the OC cycle.

18.
FASEB J ; 37(11): e23214, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773768

RESUMEN

Atg2 is a key gene in autophagy formation and plays an important role in regulating aging progress. Exercise is an important tool to resist oxidative stress in cells and delay muscle aging. However, the relationship between exercise and the muscle Atg2 gene in regulating skeletal muscle aging remains unclear. Here, overexpression or knockdown of muscle Atg2 gene was achieved by constructing the AtgUAS/MhcGal4 system in Drosophila, and these flies were also subjected to an exercise intervention for 2 weeks. The results showed that both overexpression of Atg2 and exercise significantly increased the climbing speed, climbing endurance, cardiac function, and lifespan of aging flies. They also significantly up-regulated the expression of muscle Atg2, AMPK, Sirt1, and PGC-1α genes, and they significantly reduced muscle malondialdehyde and triglyceride. These positive benefits were even more pronounced when the two were combined. However, the effects of Atg2 knockdown on skeletal muscle, heart, and lifespan were reversed compared to its overexpression. Importantly, exercise ameliorated age-related changes induced by Atg2 knockdown. Therefore, current results confirmed that both overexpression of muscle Atg2 and exercise delayed age-related deteriorations of skeletal muscle, the heart function, and lifespan, and exercise could also reverse age-related changes induced by Atg2 knockdown. The molecular mechanism is related to the overexpression of the Atg2 gene and exercise, which increase the activity of the AMPK/Sirt1/PGC-1α pathway, oxidation and antioxidant balance, and lipid metabolism in aging muscle.


Asunto(s)
Proteínas de Drosophila , Condicionamiento Físico Animal , Animales , Masculino , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Drosophila/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Terapia por Ejercicio , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
19.
Exp Physiol ; 109(2): 165-174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38189630

RESUMEN

The Tour Divide (TD) is a 4385 km ultra-endurance bicycle race that follows the continental divide from Canada to Mexico. In this case study, we performed a comprehensive molecular and physiological profile before and after the completion of the TD. Assessments were performed 35 days before the start (Pre-TD) and ∼36 h after the finish (Post-TD). Total energy expenditure was assessed during the first 9 days by doubly labelled water (2 H2 18 O), abdominal and leg tissue volumes via MRI, and graded exercise tests to quantify fitness and substrate preference. Vastus lateralis muscle biopsies were taken to measure mitochondrial function via respirometry, and vascular function was assessed using Doppler ultrasound. The 47-year-old male subject took 16 days 7 h 45 min to complete the route. He rode an average of 16.8 h/day. Neither maximal O2 uptake nor maximal power output changed pre- to post-TD. Measurement of total energy expenditure and dietary recall records suggested maintenance of energy balance, which was supported by the lack of change in body weight. The subject lost both appendicular and trunk fat mass and gained leg lean mass pre- to post-TD. Skeletal muscle mitochondrial and vascular endothelial function decreased pre- to post-TD. Overall, exercise performance was maintained despite reductions in muscle mitochondrial and vascular endothelial function post-TD, suggesting a metabolic reserve in our highly trained athlete.


Asunto(s)
Ciclismo , Resistencia Física , Masculino , Humanos , Persona de Mediana Edad , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Metabolismo Energético , Músculo Esquelético/fisiología
20.
Exp Physiol ; 109(2): 227-239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966359

RESUMEN

Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.


Asunto(s)
Composición Corporal , Metabolismo Energético , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Metabolismo Energético/fisiología , Composición Corporal/fisiología , Metabolismo Basal/fisiología , Ingestión de Energía/fisiología , Músculo Esquelético , Océanos y Mares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda