Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ann Bot ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093025

RESUMEN

BACKGROUND: Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g., flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g., nectar rewards). SCOPE: In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-day greenhouse experiment. KEY RESULTS: We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS: In summary, we show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.

2.
J Anim Ecol ; 91(4): 858-869, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218220

RESUMEN

Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defences can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats Lasionycteris noctivagans, a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defences or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.


Asunto(s)
Quirópteros , Migración Animal , Animales , Quirópteros/fisiología , Femenino , Inmunidad , Isótopos , Masculino , Alas de Animales
3.
Ecol Evol ; 13(8): e10402, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560183

RESUMEN

Regeneration of lost appendages is a gradual process in many species, spreading energetic costs of regeneration through time. Energy allocated to the regeneration of lost appendages cannot be used for other purposes and, therefore, commonly elicits energetic trade-offs in biological processes. We used limb loss in the Asian shore crab Hemigrapsus sanguineus to compare the strength of energetic trade-offs resulting from historic limb losses that have been partially regenerated versus current injuries that have not yet been repaired. Consistent with previous studies, we show that limb loss and regeneration results in trade-offs that reduce reproduction, energy storage, and growth. As may be expected, we show that trade-offs in these metrics from historic limb losses far outweigh trade-offs from current limb losses, and correlate directly with the degree of historic limb loss that has been regenerated. As regenerating limbs get closer to their normal size, these historical injuries get harder to detect, despite the continued allocation of additional resources to limb development. Our results demonstrate the importance of and a method for identifying historic appendage losses and of quantifying the amount of regeneration that has already occurred, as opposed to assessing only current injury, to accurately assess the strength of energetic trade-offs in animals recovering from nonlethal injury.

4.
Physiol Biochem Zool ; 96(4): 247-259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37418607

RESUMEN

AbstractParasites can affect host behavior, cognition, locomotion, body condition, and many other physiological traits. Changes to host aerobic metabolism may be responsible for these parasite-induced performance alterations. Whole-organism metabolic rate is underpinned by cellular energy metabolism driven most prominently by mitochondria. However, few studies have explored how mitochondrial enzymatic activity relates to body condition and parasite infection, despite it being a putative site for metabolic disruptions related to health status. We studied correlations among natural parasite infection, host body condition, and activity of key mitochondrial enzymes in target organs from wild-caught pumpkinseed sunfish (Lepomis gibbosus) to better understand the cellular responses of fish hosts to endoparasite infection. Enzymatic activities in the gills, spleen, and brain of infected fish were not significantly related to parasite infection or host body condition. However, the activity of cytochrome c oxidase, an enzyme involved in oxidative phosphorylation, in fish hearts was higher in individuals with a lower body condition. Activities of citrate synthase, electron transport system (complexes I and III), and carnitine palmitoyltransferase were also significantly different among organ types. These results provide preliminary information regarding the likely mitochondrial pathways affecting host body condition, the maintenance energetic requirements of different organs, and the organs' specific dependency on particular mitochondrial pathways. These results help pave the way for future studies on the effects of parasite infection on mitochondrial metabolism.


Asunto(s)
Perciformes , Animales , Perciformes/metabolismo , Perciformes/parasitología , Peces , Mitocondrias/metabolismo , Metabolismo Energético , Fenotipo
5.
Physiol Biochem Zool ; 91(4): 933-942, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29782225

RESUMEN

To fuel the high energetic demands of reproduction, vertebrates employ different tactics of resource use. Large sharks exhibit long gestation periods and have relatively few well-developed young, which likely incurs high energetic costs. However, information on the relationship between the reproductive and energetic states for most shark species is lacking. In the present study, we used a noninvasive approach to assess relationships among reproductive stage, plasma triglyceride levels, body condition, and circulating reproductive hormones in free-ranging female tiger sharks (Galeocerdo cuvier). A total of 57 sharks were sampled (19 immature, 15 mature/nongravid, and 23 gravid). Circulating plasma triglycerides did not significantly differ among female tiger sharks of different reproductive stages, but body condition values were significantly higher for mature/nongravid sharks ([Formula: see text]) compared with gravid ([Formula: see text]) and immature ([Formula: see text]) sharks. For gravid and mature/nongravid sharks, no significant correlations existed among values of reproductive hormones, plasma triglycerides, and body condition. However, for immature sharks, estradiol values were negatively correlated with body condition values. Additionally, progesterone levels were positively correlated with testosterone levels in immature females. Our results suggest that this large generalist predator may not necessarily be easily characterized as a pure capital breeder, as has been previously hypothesized for ectotherms, but may rely on a mix of energy stores and opportunistic feeding to support reproduction. We present several hypotheses to explain these patterns and discuss our results in terms of energetic reproductive strategies.


Asunto(s)
Metabolismo Energético/fisiología , Tiburones/fisiología , Viviparidad de Animales no Mamíferos/fisiología , Animales , Femenino
6.
Ecol Evol ; 3(10): 3283-97, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24223268

RESUMEN

Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical "stress" genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda