Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(37): e2305572120, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669368

RESUMEN

One essential element of redox flow batteries (RFBs) is the flow field. Certain dead zones that cause local overpotentials and side effects are present in all conventional designs. To lessen the detrimental effects, a dead-zone-compensated design of flow field optimization is proposed. The proposed architecture allows for the detection of dead zones and their compensation on existing flow fields. Higher reactant concentrations and uniformity factors can be revealed in the 3D multiphysical simulation. The experiments also demonstrate that at an energy efficiency (EE) of 80%, the maximum current density of the novel flow field is 205 mA cm-2, which is much higher than the values for the previous ones (165 mA cm-2) and typical serpentine flow field (153 mA cm-2). Extensions of the design have successfully increased system EE (2.7 to 4.3%) for a variety of flow patterns. As a result, the proposed design is demonstrated to be a general method to support the functionality and application of RFBs.

2.
Proc Natl Acad Sci U S A ; 120(6): e2210351120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716371

RESUMEN

Indoor climate control is among the most energy-intensive activities conducted by humans. A building facade that can achieve versatile climate control directly, through independent and multifunctional optical reconfigurations, could significantly reduce this energy footprint, and its development represents a pertinent unmet challenge toward global sustainability. Drawing from optically adaptive multilayer skins within biological organisms, we report a multilayered millifluidic interface for achieving a comprehensive suite of independent optical responses in buildings. We digitally control the flow of aqueous solutions within confined milliscale channels, demonstrating independent command over total transmitted light intensity (95% modulation between 250 and 2,500 nm), near-infrared-selective absorption (70% modulation between 740 and 2,500 nm), and dispersion (scattering). This combinatorial optical tunability enables configurable optimization of the amount, wavelength, and position of transmitted solar radiation within buildings over time, resulting in annual modeled energy reductions of more than 43% over existing technologies. Our scalable "optofluidic" platform, leveraging a versatile range of aqueous chemistries, may represent a general solution for the climate control of buildings.

3.
Proc Natl Acad Sci U S A ; 119(44): e2207632119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279461

RESUMEN

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic conductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints, such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible conductances? Here we investigate how metabolic cost affects the parameters of neural circuits with similar activity in a model of the pyloric network of the crab Cancer borealis. We present a machine learning method that can identify a range of network models that generate activity patterns matching experimental data and find that neural circuits can consume largely different amounts of energy despite similar circuit activity. Furthermore, a reduced but still significant range of circuit parameters gives rise to energy-efficient circuits. We then examine the space of parameters of energy-efficient circuits and identify potential tuning strategies for low metabolic cost. Finally, we investigate the interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across temperatures but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our analyses show that despite metabolic efficiency and temperature robustness constraining circuit parameters, neural systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.


Asunto(s)
Píloro , Temperatura
4.
Small ; 20(16): e2308500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032167

RESUMEN

Compared to Zn-air batteries, by integrating Zn-transition metal compound reactions and oxygen redox reactions at the cell level, hybrid Zn batteries are proposed to achieve higher energy density and energy efficiency. However, attaining relatively higher energy efficiency relies on controlling the discharge capacity. At high area capacities, the proportion of the high voltage section can be neglected, resulting in a lower energy efficiency similar to that of Zn-air batteries. Here, a high-loading integrated electrode with an asymmetric structure and asymmetric wettability is fabricated, which consists of a thick nickel hydroxide (Ni(OH)2) electrode layer with vertical array channels achieving high capacity and high utilization, and a thin NiCo2O4 nanopartical-decorated N-doped graphene nanosheets (NiCo2O4/N-G) catalyst layer with superior oxygen catalytic activity. The asymmetric wettability satisfies the wettability requirements for both Zn-Ni and Zn-air reactions. The hybrid Zn battery with the integrated electrode exhibits a remarkable peak power density of 141.9 mW cm-2, superior rate performance with an energy efficiency of 71.4% even at 20 mA cm-2, and exceptional cycling stability maintaining a stable energy efficiency of ≈84% at 2 mA cm-2 over 100 cycles (400 h).

5.
Small ; : e2311671, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544302

RESUMEN

Energy-efficient white light-emitting diodes (LEDs) are in high demand across the society. Despite the significant advancements in the modern lighting industry based on solid-state electronics and inorganic phosphor, solid-state lighting (SSL) continues to pursue improved efficiency, saturated color performance, and longer lifetime. Here in this article, robust, narrow emission band nanorods (NRs) are disclosed with tailored wavelengths, aiming to enhance the color rendering index (CRI) and luminous efficacy (LE). The fabricated lighting device consists of NRs of configuration CdSe/ZnxCd1-xS/ZnS, which can independently tune CRI R1-R9 values and maximize the luminous efficacy. For general lighting, NRs with quantum yield (QY) up to 96% and 99% are developed, resulting in ultra-efficient LEDs reaching a record high luminous efficacy of 214 lm W-1 (certified by the National Accreditation Service). Furthermore, NRs are deployed onto mid-power (0.3 W@ 50 mA) LEDs, showing significantly enhanced long-term stability (T95 = 400 h @ 50 mA). With these astonishing properties, the proposed NRs can pave the way for efficient lighting with desired optical spectrum.

6.
Small ; 20(26): e2310475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229534

RESUMEN

Zinc-iodine batteries (Zn-I2) are extremely attractive as the safe and cost-effective scalable energy storage system in the stationary applications. However, the inefficient redox kinetics and "shuttling effect" of iodine species result in unsatisfactory energy efficiency and short cycle life, hindering their commercialization. In this work, Ni single atoms highly dispersed on carbon fibers is designed and synthesized as iodine anchoring sites and dual catalysts for Zn-I2 batteries, and successfully inhibit the iodine species shuttling and boost dual reaction kinetics. Theoretical calculations indicate that the reinforced d-p orbital hybridization and charge interaction between Ni single-atoms and iodine species effectively enhance the confinement of iodine species. Ni single-atoms also accelerate the iodine conversion reactions with tailored bonding structure of I─I bonds and reduced energy barrier for the dual conversion of iodine species. Consequently, the high-rate performance (180 mAh g-1 at 3 A g-1), cycling stability (capacity retention of 74% after 5900 cycles) and high energy efficiency (90% at 3 A g-1) are achieved. The work provides an effective strategy for the development of iodine hosts with high catalytic activity for Zn-I2 batteries.

7.
Small ; : e2405441, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114882

RESUMEN

Metal-air secondary batteries with ultrahigh specific energies have received vast attention and are considered new promising energy storage. The slow redox reactions between oxygen-water molecules lead to low energy efficiency (55-71%) and limited applications. Herein, it is proposed that the MIL-68(In)-derived porous carbon nanotube supports the CoNiFeP heteroconjugated alloy catalyst with an overboiling point electrolyte to achieve the ultrahigh oxidation rate of water molecules. Structural characterization and density functional theory calculations reveal that the new catalyst greatly reduces the free energy of the process, and the overboiling point further accelerates the dissociation of O─H and hydrogen bonds, and the release of O2 molecules, achieving an extra-low overpotential of 110 mV@10 mA cm-2 far lower than commercial Ir/C catalysts of 192 mV at 125 °C and state-of-the-art. Furthermore, the energy efficiency of assembled rechargeable zinc-air batteries begins to break through at 85 °C, jumps at 100 °C, and reaches ultrahigh energy efficiency of 88.1% at 125 °C with an ultralow decay rate of 0.0068% after 150 cycles far superior to those of reported metal-air batteries. This work provides a new catalyst and electrolyte joint-design strategy and reexamines the battery operating temperature to construct higher energy efficiency for secondary fuel cells.

8.
Small ; : e2401656, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994827

RESUMEN

Electrochemical CO2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+/C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+/C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis.

9.
Proc Biol Sci ; 291(2023): 20240424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807520

RESUMEN

Many theoretical treatments of foraging use energy as currency, with carbohydrates and lipids considered interchangeable as energy sources. However, herbivores must often synthesize lipids from carbohydrates since they are in short supply in plants, theoretically increasing the cost of growth. We tested whether a generalist insect herbivore (Locusta migratoria) can improve its growth efficiency by consuming lipids, and whether these locusts have a preferred caloric intake ratio of carbohydrate to lipid (C : L). Locusts fed pairs of isocaloric, isoprotein diets differing in C and L consistently selected a 2C : 1L target. Locusts reared on isocaloric, isoprotein 3C : 0L diets attained similar final body masses and lipid contents to locusts fed the 2C : 1L diet, but they ate more and had a ~12% higher metabolic rate, indicating an energetic cost for lipogenesis. These results demonstrate that some animals can selectively regulate carbohydrate-to-lipid intake and that consumption of dietary lipids can improve growth efficiency.


Asunto(s)
Carbohidratos de la Dieta , Saltamontes , Animales , Saltamontes/fisiología , Saltamontes/crecimiento & desarrollo , Grasas de la Dieta , Dieta/veterinaria , Metabolismo Energético , Metabolismo de los Lípidos , Ingestión de Energía , Herbivoria
10.
Environ Sci Technol ; 58(21): 9187-9199, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691631

RESUMEN

The coal-dominated electricity system, alongside increasing industrial electricity demand, places China into a dilemma between industrialization and environmental impacts. A practical solution is to exploit air quality and health cobenefits of industrial energy efficiency measures, which has not yet been integrated into China's energy transition strategy. This research examines the pivotal role of industrial electricity savings in accelerating coal plant retirements and assesses the nexus of energy-pollution-health by modeling nationwide coal-fired plants at individual unit level. It shows that minimizing electricity needs by implementing more efficient technologies leads to the phaseout of 1279 hyper-polluting units (subcritical, <300 MW) by 2040, advancing the retirement of these units by an average of 7 years (3-16 years). The retirements at different locations yield varying levels of air quality improvements (9-17%), across six power grids. Reduced exposure to PM2.5 could avoid 123,100 pollution-related cumulative deaths over the next 20 years from 2020, of which ∼75% occur in the Central, East, and North grids, particularly coal-intensive and populous provinces (e.g., Shandong and Jiangsu). These findings provide key indicators to support geographically specific policymaking and lay out a rationale for decision-makers to incorporate multiple benefits into early coal phaseout strategies to avoid lock-in risk.


Asunto(s)
Contaminación del Aire , Carbón Mineral , Electricidad , Centrales Eléctricas , China , Humanos , Contaminantes Atmosféricos
11.
Environ Sci Technol ; 58(35): 15359-15370, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39172505

RESUMEN

This study explores the potential of synergistically reducing direct (refrigerant) and indirect (electricity) greenhouse gas (GHG) emissions in the global room air conditioning (RAC) sector, based on 80% of global RAC manufactured in China. Three scenarios are evaluated: Business-as-usual (BAU) based on maintaining refrigerant and energy efficiency levels from 2021 China RAC sales shares, Kigali Amendment compliant with 10% energy efficiency improvement by 2025 (KAE), and accelerated refrigerant transition and energy efficiency improvement (ATE). Each scenario considers the costs of refrigerant and efficiency measures for export market groups based on Kigali Amendment classifications. BAU predicts around 1 Gt CO2-eq average annual global RAC emissions (2022-2060). Cumulative emission reductions in China's RAC manufacturing under KAE and ATE are 12.2 and 17.2 Gt CO2-eq A5II and A5I (except China), presenting cost-effective abatement measures, with average costs of -$51.4 and -$68.8/t CO2-eq in KAE and ATE. Cumulative average abatement costs are around $18 and $4/t CO2-eq globally. KAE and ATE scenarios would avoid surface temperature rises of 0.023 (±0.002) °C and 0.027 (±0.003) °C, respectively, versus BAU. Collaboration between China and importing countries is urged to enhance energy efficiency in RACs traded, ensuring sustainable mitigation aligned with the Kigali Amendment.


Asunto(s)
Gases de Efecto Invernadero , China , Aire Acondicionado , Contaminantes Atmosféricos
12.
Cereb Cortex ; 33(7): 3996-4012, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36104858

RESUMEN

The human brain is energetically expensive, yet the key factors governing its heterogeneous energy distributions across cortical regions to support its diversity of functions remain unexplored. Here, we built up a 3D digital cortical energy atlas based on the energetic costs of all neuropil activities into a high-resolution stereological map of the human cortex with cellular and synaptic densities derived, respectively, from ex vivo histological staining and in vivo PET imaging. The atlas was validated with PET-measured glucose oxidation at the voxel level. A 3D cortical activity map was calculated to predict the heterogeneous activity rates across all cortical regions, which revealed that resting brain is indeed active with heterogeneous neuronal activity rates averaging around 1.2 Hz, comprising around 70% of the glucose oxidation of the cortex. Additionally, synaptic density dominates spatial patterns of energetics, suggesting that the cortical energetics rely heavily on the distribution of synaptic connections. Recent evidence from functional imaging studies suggests that some cortical areas act as hubs (i.e., interconnecting distinct and functionally active regions). An inverse allometric relationship was observed between hub metabolic rates versus hub volumes. Hubs with smaller volumes have higher synapse density, metabolic rate, and activity rates compared to nonhubs. The open-source BrainEnergyAtlas provides a granular framework for exploring revealing design principles in energy-constrained human cortical circuits across multiple spatial scales.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas , Neurópilo , Descanso , Imagen por Resonancia Magnética/métodos
13.
Environ Res ; 248: 118003, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163544

RESUMEN

Hydrogen is a key energy vector to accomplishing energy transition and decarbonization goals proposed in the transport and industrial sectors worldwide. In recent years, research has focused on analyzing, designing, and optimizing hydrogen production, searching to improve economic prefeasibility with minimal emissions of polluting gases. Therefore, the techno-economic analysis of hydrogen production by electrolytic and gasification processes becomes relevant since these processes could compete commercially with industrial technologies such as SMR - Steam methane reforming. This work aims to analyze hydrogen production in stand-alone processes and energy-driven biorefineries. The gasification and electrolysis technologies were evaluated experimentally, and the yields obtained were input data for scaling up the processes through simulation tools. Biomass gasification is more cost-effective than electrolytic schemes since the hydrogen production costs were 4.57 USD/kg and 8.30 USD/kg at an annual production rate of 491.6 tons and 38.96 tons, respectively. Instead, the electrolysis process feasibility is strongly influenced by the recycled water rate and the electricity cost. A sensitivity analysis was performed to evaluate the temperature, pressure, and current density variability on the hydrogen production rate. The increase in pressure and current density induces parasitic currents while the temperature increases hydrogen production. Although higher hydrogen production rates from gasification, the syngas composition decreases the possibility of being implemented in applications where purity is critical.


Asunto(s)
Gases , Vapor , Biomasa , Hidrógeno , Electrólisis
14.
Environ Res ; 260: 119526, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972341

RESUMEN

Rainwater Harvesting (RWH) is increasingly recognized as a vital sustainable practice in urban environments, aimed at enhancing water conservation and reducing energy consumption. This study introduces an innovative integration of nano-composite materials as Silver Nanoparticles (AgNPs) into RWH systems to elevate water treatment efficiency and assess the resulting environmental and energy-saving benefits. Utilizing a regression analysis approach with Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), this study will reach the study objective. In this study, the inputs are building attributes, environmental parameters, sociodemographic factors, and the algorithms SVM and KNN. At the same time, the outputs are predicted energy consumption, visual comfort outcomes, ROC-AUC values, and Kappa Indices. The integration of AgNPs into RWH systems demonstrated substantial environmental and operational benefits, achieving a 57% reduction in microbial content and 20% reductions in both chemical usage and energy consumption. These improvements highlight the potential of AgNPs to enhance water safety and reduce the environmental impact of traditional water treatments, making them a viable alternative for sustainable water management. Additionally, the use of a hybrid SVM-KNN model effectively predicted building energy usage and visual comfort, with high accuracy and precision, underscoring its utility in optimizing urban building environments for sustainability and comfort.


Asunto(s)
Aprendizaje Automático , Plata , Ciudades , Purificación del Agua/métodos , Nanopartículas del Metal , Lluvia , Conservación de los Recursos Hídricos/métodos , Máquina de Vectores de Soporte
15.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34728567

RESUMEN

Improvements in rechargeable batteries are enabling several electric urban air mobility (UAM) aircraft designs with up to 300 mi of range with payload equivalents of up to seven passengers. Novel UAM aircraft consume between 130 Wh/passenger-mi and ∼ 1,200 Wh/passenger-mi depending on the design and utilization, compared to an expected consumption of over 220 Wh/passenger-mi and 1,000 Wh/passenger-mi for terrestrial electric vehicles and combustion engine vehicles, respectively. We also find that several UAM aircraft designs are approaching technological viability with current Li-ion batteries, based on the specific power and energy, while rechargeability and lifetime performance remain uncertain. These aspects highlight the technological readiness of a new segment of transportation.

16.
Lasers Med Sci ; 39(1): 97, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558189

RESUMEN

To study the effect range of the Nd:YAG laser through various levels of cloudy medium for targets with varying grayscale values in vitro. The coated paper cards with grayscale values of 0, 50, 100, and 150 were used as the laser's targets, which were struck straightly with varying energies using three burst modes (single pulse, double pulse, and triple pulse). Six filters (transmittances of 40, 50, 60, 70, 80, and 90) were applied to simulate various levels of cloudy refractive medium. Image J software was used to measure the diameters and regions of the laser spots. The ranges of the Nd:YAG laser spots increased with energy in the same burst mode (P < 0.05). Under the same amount of energy, the ranges of the Nd:YAG laser spot increased with the grayscale value of the targets (P < 0.05). The greater the transmittance of the filters employed, the larger the range of the Nd: YAG laser spots produced. Assuming that the total pulse energy is identical, the effect ranges of multi-pulse burst modes were significantly larger than those of single-pulse burst mode (P < 0.05). The effect range of a Nd:YAG laser grows with increasing energy and the target's grayscale value. A cloudy refractive medium has a negative impact on the effect range of the Nd: YAG laser. The single pulse mode has the narrowest and safest efficiency range.


Asunto(s)
Aluminio , Láseres de Estado Sólido , Láseres de Estado Sólido/uso terapéutico , Conservación de los Recursos Energéticos , Itrio
17.
Sensors (Basel) ; 24(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275617

RESUMEN

Deploying Cellular Internet of Things (CIoT) devices in urban and remote areas faces significant energy efficiency challenges. This is especially true for Narrowband IoT (NB-IoT) devices, which are expected to function on a single charge for up to 10 years while transmitting small amounts of data daily. The 3rd Generation Partnership Project (3GPP) has introduced energy-saving mechanisms in Releases 13 to 16, including Early Data Transmission (EDT) and Preconfigured Uplink Resources (PURs). These mechanisms extend battery life and reduce latency by enabling data transmission without an active Radio Resource Control (RRC) connection or Random Access Procedure (RAP). This paper examines these mechanisms using the LENA-NB simulator in the ns-3 environment, which is a comprehensive framework for studying various aspects of NB-IoT. The LENA-NB has been extended with PURs, and our analysis shows that PURs significantly enhance battery life and latency efficiency, particularly in high-density environments. Compared to the default RAP method, PURs reduce energy consumption by more than 2.5 times and increases battery life by 1.6 times. Additionally, PURs achieve latency reductions of 2.5-3.5 times. The improvements with PURs are most notable for packets up to 125 bytes. Our findings highlight PURs' potential to enable more efficient and effective CIoT deployments across various scenarios. This study represents a detailed analysis of latency and energy consumption in a simulated environment, advancing the understanding of PURs' benefits.

18.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205047

RESUMEN

The Internet of Things (IoT) is a promising technology for sensing and monitoring the environment to reduce disaster impact. Energy is one of the major concerns for IoT devices, as sensors used in IoT devices are battery-operated. Thus, it is important to reduce energy consumption, especially during data transmission in disaster-prone situations. Clustering-based communication helps reduce a node's energy decay during data transmission and enhances network lifetime. Many hybrid combination algorithms have been proposed for clustering and routing protocols to improve network lifetime in disaster scenarios. However, the performance of these protocols varies widely based on the underlying network configuration and the optimisation parameters considered. In this research, we used the clustering parameters most relevant to disaster scenarios, such as the node's residual energy, distance to sink, and network coverage. We then proposed the bio-inspired hybrid BOA-PSO algorithm, where the Butterfly Optimisation Algorithm (BOA) is used for clustering and Particle Swarm Optimisation (PSO) is used for the routing protocol. The performance of the proposed algorithm was compared with that of various benchmark protocols: LEACH, DEEC, PSO, PSO-GA, and PSO-HAS. Residual energy, network throughput, and network lifetime were considered performance metrics. The simulation results demonstrate that the proposed algorithm effectively conserves residual energy, achieving more than a 17% improvement for short-range scenarios and a 10% improvement for long-range scenarios. In terms of throughput, the proposed method delivers a 60% performance enhancement compared to LEACH, a 53% enhancement compared to DEEC, and a 37% enhancement compared to PSO. Additionally, the proposed method results in a 60% reduction in packet drops compared to LEACH and DEEC, and a 30% reduction compared to PSO. It increases network lifetime by 10-20% compared to the benchmark algorithms.

19.
Sensors (Basel) ; 24(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39338808

RESUMEN

Fog networking has become an established architecture addressing various applications with strict latency, jitter, and bandwidth constraints. Fog Nodes (FNs) allow for flexible and effective computation offloading and content distribution. However, the transmission of computational tasks, the processing of these tasks, and finally sending the results back still incur energy costs. We survey the literature on fog computing, focusing on energy consumption. We take a holistic approach and look at energy consumed by devices located in all network tiers from the things tier through the fog tier to the cloud tier, including communication links between the tiers. Furthermore, fog network modeling is analyzed with particular emphasis on application scenarios and the energy consumed for communication and computation. We perform a detailed analysis of model parameterization, which is crucial for the results presented in the surveyed works. Finally, we survey energy-saving methods, putting them into different classification systems and considering the results presented in the surveyed works. Based on our analysis, we present a classification and comparison of the fog algorithmic models, where energy is spent on communication and computation, and where delay is incurred. We also classify the scenarios examined by the surveyed works with respect to the assumed parameters. Moreover, we systematize methods used to save energy in a fog network. These methods are compared with respect to their scenarios, objectives, constraints, and decision variables. Finally, we discuss future trends in fog networking and how related technologies and economics shall trade their increasing development with energy consumption.

20.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400443

RESUMEN

Fifth Generation (5G) mobile networks introduce the concept of slicing to ensure isolation among the various supported heterogeneous services. The User Equipment (UE) can be connected to multiple slices simultaneously. Additionally, the notion of a Bandwidth Part (BWP) was also instigated to reduce power consumption. A BWP is a small chunk of the bandwidth scanned by the UE to retrieve its service data. Therefore, a UE connected to multiple services can be configured with multiple BWPs each associated with a given service. Such UEs find themselves scanning multiple BWPs, which can be time consuming and highly energy intensive. Hence, it is paramount to study the appropriate choice of the BWP configuration from an energy-efficiency perspective for multi-slice users depending on their battery level. In this paper, two energy-efficient BWP selection solutions are proposed for users connected to multiple slices. The first solution is based on a centralized approach where UEs are stirred optimally to the best BWP configuration, while the second solution relies on a user-centric distributed approach using non-cooperative game theory. The proposed schemes take into account the users' battery level and their sojourn time in the network as well as the scanned BWP size. Both solutions are compared with one another and against the legacy solution. Intensive simulation results demonstrate the efficiency of our proposition in terms of users' energy efficiency and quality of service.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda