RESUMEN
BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.
Asunto(s)
ADN Mitocondrial/genética , Síndrome de Gitelman/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Femenino , Genotipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patología , Células HEK293 , Humanos , Lactante , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Biológicos , Conformación de Ácido Nucleico , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Adulto JovenRESUMEN
BACKGROUND: Hypertension often occurs before renal function deteriorates in autosomal dominant polycystic kidney disease (ADPKD). It is unknown whether the Pkd1 gene product polycystin-1-the predominant causal factor in ADPKD-itself contributes to ADPKD hypertension independent of cystogenesis. METHODS: We induced nephron-specific disruption of the Pkd1 gene in 3-month-old mice and examined them at 4-5 months of age. RESULTS: Kidneys from the Pkd1 knockout mice showed no apparent renal cysts, tubule dilation, or increased cell proliferation. Compared with control mice, Pkd1 knockout mice exhibited reduced arterial pressure during high salt intake; this associated with an increased natriuretic, diuretic, and kaliuretic response during the first 2-3 days of salt loading. The lower arterial pressure and enhanced natriuresis during high salt loading in Pkd1 knockout mice were associated with lower urinary nitrite/nitrate excretion and markedly increased urinary PGE2 excretion, whereas GFR, plasma renin concentration, and urinary endothelin-1 excretion were similar between knockout and control mice. Kidney cyclooxygenase-2 protein levels were increased in Pkd1 knockout mice during high salt intake; administration of NS-398, a selective cyclooxygenase-2 inhibitor, abolished the arterial pressure difference between the knockout and control mice during high salt intake. Total kidney Na+/K+/2Cl- cotransporter isoform 2 (NKCC2) levels were greatly reduced in Pkd1 knockout mice fed a high salt diet compared with controls. CONCLUSIONS: These studies suggest that nephron polycystin-1 deficiency does not itself contribute to ADPKD hypertension and that it may, in fact, exert a relative salt-wasting effect. The work seems to comprise the first in vivo studies to describe a potential physiologic role for nephron polycystin-1 in the absence of cysts, tubule dilation, or enhanced cell proliferation.
Asunto(s)
Presión Sanguínea/fisiología , Ciclooxigenasa 2/fisiología , Nefronas/fisiología , Riñón Poliquístico Autosómico Dominante/etiología , Canales Catiónicos TRPP/fisiología , Animales , Dinoprostona/orina , Tasa de Filtración Glomerular , Ratones , Ratones Noqueados , Miembro 1 de la Familia de Transportadores de Soluto 12/fisiologíaRESUMEN
BACKGROUND: Increased nerve activity causes hypertension and kidney disease. Recent studies suggest that renal denervation reduces BP in patients with hypertension. Renal NE release is regulated by prejunctional α2A-adrenoceptors on sympathetic nerves, and α2A-adrenoceptors act as autoreceptors by binding endogenous NE to inhibit its own release. However, the role of α2A-adrenoceptors in the pathogenesis of hypertensive kidney disease is unknown. METHODS: We investigated effects of α2A-adrenoceptor-regulated renal NE release on the development of angiotensin II-dependent hypertension and kidney disease. In uninephrectomized wild-type and α2A-adrenoceptor-knockout mice, we induced hypertensive kidney disease by infusing AngII for 28 days. RESULTS: Urinary NE excretion and BP did not differ between normotensive α2A-adrenoceptor-knockout mice and wild-type mice at baseline. However, NE excretion increased during AngII treatment, with the knockout mice displaying NE levels that were significantly higher than those of wild-type mice. Accordingly, the α2A-adrenoceptor-knockout mice exhibited a systolic BP increase, which was about 40 mm Hg higher than that found in wild-type mice, and more extensive kidney damage. In isolated kidneys, AngII-enhanced renal nerve stimulation induced NE release and pressor responses to a greater extent in kidneys from α2A-adrenoceptor-knockout mice. Activation of specific sodium transporters accompanied the exaggerated hypertensive BP response in α2A-adrenoceptor-deficient kidneys. These effects depend on renal nerves, as demonstrated by reduced severity of AngII-mediated hypertension and improved kidney function observed in α2A-adrenoceptor-knockout mice after renal denervation. CONCLUSIONS: Our findings reveal a protective role of prejunctional inhibitory α2A-adrenoceptors in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.
Asunto(s)
Hipertensión Renal/etiología , Hipertensión Renal/prevención & control , Nefritis/etiología , Nefritis/prevención & control , Receptores Adrenérgicos alfa 2/fisiología , Sistema Nervioso Simpático/fisiopatología , Transmisión Sináptica/fisiología , Angiotensina II , Animales , Modelos Animales de Enfermedad , Hipertensión Renal/fisiopatología , Ratones , Ratones Noqueados , Nefritis/fisiopatología , SimpatectomíaRESUMEN
BACKGROUND: Dietary sodium intake regulates the thiazide-sensitive Na-Cl cotransporter (NCC) in the distal convoluted tubule (DCT). Whether the basolateral, inwardly rectifying potassium channel Kir4.1/Kir5.1 (a heterotetramer of Kir4.1/Kir5.1) in the DCT is essential for mediating the effect of dietary sodium intake on NCC activity is unknown. METHODS: We used electrophysiology, renal clearance techniques, and immunoblotting to examine effects of Kir4.1/Kir5.1 in the DCT and NCC in wild-type and kidney-specific Kir4.1 knockout mice. RESULTS: Low sodium intake stimulated basolateral Kir4.1/Kir5.1 activity, increased basolateral K+ conductance, and hyperpolarized the membrane. Conversely, high sodium intake inhibited the potassium channel, decreased basolateral K+ currents, and depolarized the membrane. Low sodium intake increased total and phosphorylated NCC expression and augmented hydrochlorothiazide-induced natriuresis; high sodium intake had opposite effects. Thus, elevated NCC activity induced by low sodium intake was associated with upregulation of Kir4.1/Kir5.1 activity in the DCT, whereas inhibition of NCC activity by high sodium intake was associated with diminished Kir4.1/Kir5.1 activity. In contrast, dietary sodium intake did not affect NCC activity in knockout mice. Further, Kir4.1 deletion not only abolished basolateral K+ conductance and depolarized the DCT membrane, but also abrogated the stimulating effects induced by low sodium intake on basolateral K+ conductance and hyperpolarization. Finally, dietary sodium intake did not alter urinary potassium excretion rate in hypokalemic knockout and wild-type mice. CONCLUSIONS: Stimulation of Kir4.1/Kir5.1 by low intake of dietary sodium is essential for NCC upregulation, and inhibition of Kir4.1/Kir5.1 induced by high sodium intake is a key step for downregulation of NCC.
Asunto(s)
Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Sodio en la Dieta/farmacología , Simportadores de Cloruro de Sodio-Potasio/efectos de los fármacos , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Modelos Animales de Enfermedad , Electrofisiología , Hipopotasemia/tratamiento farmacológico , Hipopotasemia/fisiopatología , Transporte Iónico , Túbulos Renales Distales/metabolismo , Ratones , Ratones Noqueados , Natriuresis/efectos de los fármacos , Distribución Aleatoria , Receptores de Droga/efectos de los fármacos , Sensibilidad y Especificidad , Simportadores del Cloruro de Sodio/efectos de los fármacos , Regulación hacia ArribaRESUMEN
The epithelial Na+ channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, ß, and γ, which are differentially expressed (α > ß > γ). Airway-targeted overexpression of the ß subunit results in Na+ hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na+ hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na+ transport and disease severity exceeding that of ßENaC-Tg mice, we generated double (αß, αγ, ßγ) and triple (αßγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double ßγENaC-Tg mice exhibited airway Na+ absorption greater than that of ßENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αßENaC-Tg mice exhibited Na+ transport rates comparable to those of ßENaC-Tg littermates. However, αßENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αßγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of ßENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of ß- and γENaC had additive effects on Na+ transport and disease severity, suggesting dose dependency of these two variables.
Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Enfermedades Pulmonares/patología , Neumonía/patología , Mucosa Respiratoria/patología , Animales , Canales Epiteliales de Sodio/genética , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fenotipo , Neumonía/etiología , Neumonía/metabolismo , Mucosa Respiratoria/metabolismo , Transducción de SeñalRESUMEN
The furosemide-sensitive Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2) is crucial for NaCl reabsorption in kidney thick ascending limb (TAL) and drives the urine concentrating mechanism. NKCC2 activity is modulated by N-terminal phosphorylation and dephosphorylation. Serine-threonine kinases that activate NKCC2 have been identified, but less is known about phosphatases that deactivate NKCC2. Inhibition of calcineurin phosphatase has been shown to stimulate transport in the TAL and the distal convoluted tubule. Here, we identified NKCC2 as a target of the calcineurin Aß isoform. Short-term cyclosporine administration in mice augmented the abundance of phospho-NKCC2, and treatment of isolated TAL with cyclosporine increased the chloride affinity and transport activity of NKCC2. Because sorting-related receptor with A-type repeats (SORLA) may affect NKCC2 phosphoregulation, we used SORLA-knockout mice to test whether SORLA is involved in calcineurin-dependent modulation of NKCC2. SORLA-deficient mice showed more calcineurin Aß in the apical region of TAL cells and less NKCC2 phosphorylation and activity compared with littermate controls. In contrast, overexpression of SORLA in cultured cells reduced the abundance of endogenous calcineurin Aß. Cyclosporine administration rapidly normalized the abundance of phospho-NKCC2 in SORLA-deficient mice, and a functional interaction between calcineurin Aß and SORLA was further corroborated by binding assays in rat kidney extracts. In summary, we have shown that calcineurin Aß and SORLA are key components in the phosphoregulation of NKCC2. These results may have clinical implications for immunosuppressive therapy using calcineurin inhibitors.
Asunto(s)
Calcineurina/fisiología , Riñón/metabolismo , Proteínas de Transporte de Membrana/fisiología , Receptores de LDL/fisiología , Simportadores de Cloruro de Sodio-Potasio/fisiología , Animales , Masculino , Ratones , Fosforilación , Ratas , Ratas Sprague-DawleyRESUMEN
Excess aldosterone is an important contributor to hypertension and cardiovascular disease. Conversely, low circulating aldosterone causes salt wasting and hypotension. Aldosterone activates mineralocorticoid receptors (MRs) to increase epithelial sodium channel (ENaC) activity. However, aldosterone may also stimulate the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC). Here, we generated mice in which MRs could be deleted along the nephron to test this hypothesis. These kidney-specific MR-knockout mice exhibited salt wasting, low BP, and hyperkalemia. Notably, we found evidence of deficient apical orientation and cleavage of ENaC, despite the salt wasting. Although these mice also exhibited deficient NCC activity, NCC could be stimulated by restricting dietary potassium, which also returned BP to control levels. Together, these results indicate that MRs regulate ENaC directly, but modulation of NCC is mediated by secondary changes in plasma potassium concentration. Electrolyte balance and BP seem to be determined, therefore, by a delicate interplay between direct and indirect mineralocorticoid actions in the distal nephron.
Asunto(s)
Túbulos Renales Distales/metabolismo , Receptores de Mineralocorticoides/fisiología , Cloruro de Sodio Dietético/metabolismo , Animales , Transporte Biológico , Ratones , Ratones NoqueadosRESUMEN
Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11ßHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.
Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/farmacología , Túbulos Renales Distales/patología , Fosforilación/efectos de los fármacos , Simportadores del Cloruro de Sodio/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Análisis de Varianza , Animales , Células Cultivadas , ADN Complementario/análisis , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Femenino , Hipertrofia/patología , Túbulos Renales Distales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa/métodos , ARN/análisis , Distribución Aleatoria , Transcitosis/fisiologíaRESUMEN
In the kidney, epithelial cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na(+)/K(+)/2Cl(-) co-transporter NKCC2. Steady-state surface NKCC2 levels in the apical membrane are maintained by a balance between exocytic delivery, endocytosis, and recycling. cAMP is the second messenger of hormones that enhance NaCl absorption. cAMP stimulates NKCC2 exocytic delivery via protein kinase A (PKA), increasing steady-state surface NKCC2. However, the molecular mechanism involved has not been studied. We found that several members of the SNARE family of membrane fusion proteins are expressed in TALs. Here we report that NKCC2 co-immunoprecipitates with VAMP2 in rat TALs, and they co-localize in discrete domains at the apical surface. cAMP stimulation enhanced VAMP2 exocytic delivery to the plasma membrane of renal cells, and stimulation of PKA enhanced VAMP2-NKCC2 co-immunoprecipitation in TALs. In vivo silencing of VAMP2 but not VAMP3 in TALs blunted cAMP-stimulated steady-state surface NKCC2 expression and completely blocked cAMP-stimulated NKCC2 exocytic delivery. VAMP2 was not involved in constitutive NKCC2 delivery. We concluded that VAMP2 but not VAMP3 selectively mediates cAMP-stimulated NKCC2 exocytic delivery and surface expression in TALs. We also demonstrated that cAMP stimulation enhances VAMP2 exocytosis and promotes VAMP2 interaction with NKCC2.
Asunto(s)
AMP Cíclico/metabolismo , Riñón/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Animales , Células Cultivadas , Exocitosis , Silenciador del Gen , Fosforilación , Transporte de Proteínas , Ratas , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 3 de Membrana Asociada a Vesículas/genéticaRESUMEN
There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na(+) absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na(+) excretion takes place. Here, the appropriate regulation of transepithelial Na(+) transport, mediated by the amiloride-sensitive epithelial Na(+) channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na(+) transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by â¼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na(+) absorption may contribute to the hypertensive effect of increased renal sympathetic activity.
Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Sodio/metabolismo , Aldosterona , Animales , Línea Celular , Ratones Endogámicos C57BLRESUMEN
Kidney tubuloids are cell models that are derived from human or mouse renal epithelial cells and show high similarities with their in vivo counterparts. Tubuloids grow polarized in 3D, allow for long-term expansion, and represent multiple segments of the nephron, as shown by their gene expression pattern. In addition, human tubuloids form tight, functional barriers and have been succesfully used for drug testing. Our knowledge of mouse tubuloids, on the other hand, is only minimal. In this study, we further characterized mouse tubuloids and differentiated them towards the collecting duct, which led to a significant upregulation of collecting duct-specific mRNAs of genes and protein expression, including the water channel AQP2 and the sodium channel ENaC. Differentiation resulted in polarized expression of collecting duct water channels AQP2 and AQP3. Also, a physiological response to desmopressin and forskolin stimulation by translocation of AQP2 to the apical membrane was demonstrated. Furthermore, amiloride-sensitive ENaC-mediated sodium uptake was shown in differentiated tubuloids using radioactive tracer sodium. This study demonstrates that mouse tubuloids can be differentiated towards the collecting duct and exhibit collecting duct-specific function. This illustrates the potential use of mouse kidney tubuloids as novel in vitro models to study (patho)physiology of kidney diseases.
RESUMEN
This brief review describes some representative methodological approaches to the isolation of putative endogenous inhibitors of epithelial sodium transport - i.e., as ouabain-like factors (OLF) that inhibit the sodium transport enzyme Na-K-ATPase or inhibit the epithelial sodium channel (ENaC). Gel chromatography and reverse-phase (RP)-high performance liquid chromatography (HPLC) of lyophilized and reconstituted 24 h-urine from salt-loaded healthy humans led to two active fractions, a hydrophilic OLF-1 and a lipophilic OLF-2, whose mass (Ms)-spectroscopic data indicate a Mr of 391 (1, 2). Further identification was attempted by Ms-, infrared (IR)-, ultraviolet (UV)-, and (1)H-NMR-spectroscopy. OLF-1 and OLF-2 may be closely related if not identical to (di)ascorbic acid or its salts such as vanadium (V)-V(v)-diascorbate with Mr 403 (3) and V(IV)-diascorbate. OLF-1 and V(v)-diascorbate are about 10-fold stronger inhibitors of Na-K-ATPase than OLF-2 and V(IV)-diascorbate, respectively. In conscious rats, i.v. infusion of OLF-1 and OLF-2 resulted in a strong natriuresis. In a similar study, Cain et al. (4) isolated a sodium transport inhibitor from the urine of uremic patients by gel chromatography and RP-HPLC. In uremic rats, a natriuretic response to the injection of the active material was found. Xanthurenic acid 8-O-ß-d-glucoside (Mr 368) and xanthurenic acid 8-O-sulfate (Mr 284) were identified as endogenous inhibitors of sodium transport acting, e.g., by ENaC blockade. No definite relation to blood pressure, body fluid volume, or sodium balance has been reported for any of these above factors, and further studies to identify the natriuretic and/or ouabain-like compound(s) or hormone(s) will be needed.
RESUMEN
The Kir4.1/Kir5.1 channel mediates basolateral K(+) recycling in renal distal tubules; this process is critical for Na(+) reabsorption at the tubules. Mutations in Kir4.1 are associated with EAST/SeSAME syndrome, a genetic disorder characterized by renal salt wasting. In this study, we found that MAGI-1 anchors Kir4.1 channels (Kir4.1 homomer and Kir4.1/Kir5.1 heteromer) and contributes to basolateral K(+) recycling. The Kir4.1 A167V mutation associated with EAST/SeSAME syndrome caused mistrafficking of the mutant channels and inhibited their expression on the basolateral surface of tubular cells. These findings suggest mislocalization of the Kir4.1 channels contributes to renal salt wasting.