Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901957

RESUMEN

B-acute lymphoblastic leukemia (B-ALL) is one of the most common pediatric cancers, wherein regulatory T cells (Treg) and exhausted CD8+ T cells may be important in its development and maintenance. In this bioinformatics study, we evaluated the expression of 20 Treg/CD8 exhaustion markers and their possible roles in patients with B-ALL. The mRNA expression values of peripheral blood mononuclear cell samples from 25 patients with B-ALL and 93 healthy subjects (HSs) were downloaded from publicly available datasets. Treg/CD8 exhaustion marker expression was normalized with that of the T cell signature and correlated with the expression of Ki-67, regulatory transcription factors (FoxP3, Helios), cytokines (IL-10, TGF-ß), CD8+ markers (CD8α chain, CD8ß chain), and CD8+ activation markers (Granzyme B, Granulysin). The mean expression level of 19 Treg/CD8 exhaustion markers was higher in the patients than in the HSs. In patients, the expression of five markers (CD39, CTLA-4, TNFR2, TIGIT, and TIM-3) correlated positively with Ki-67, FoxP3, and IL-10 expression. Moreover, the expression of some of them correlated positively with Helios or TGF-ß. Our results suggested that Treg/CD8+ T cells expressing CD39, CTLA-4, TNFR2, TIGIT, and TIM-3 favor B-ALL progression, and targeted immunotherapy against these markers could be a promising approach for treating B-ALL.


Asunto(s)
Linfocitos T CD8-positivos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Niño , Humanos , Linfocitos T CD8-positivos/metabolismo , Interleucina-10/metabolismo , Antígeno CTLA-4/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Leucocitos Mononucleares/metabolismo , Antígeno Ki-67/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Enfermedad Aguda , Factores de Transcripción Forkhead/genética
2.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33524124

RESUMEN

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Asunto(s)
Inmunidad Adaptativa/inmunología , COVID-19/inmunología , Inmunidad Innata/inmunología , Anciano , Biomarcadores/sangre , COVID-19/sangre , COVID-19/virología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Citocinas/inmunología , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Inflamación/virología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Linfopenia/sangre , Linfopenia/inmunología , Linfopenia/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
3.
J Neurooncol ; 145(3): 429-439, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31686330

RESUMEN

BACKGROUND: Non-viral manufacturing of CAR T cells via the Sleeping Beauty transposon is cost effective and reduces the risk of insertional mutagenesis from viral transduction. However, the current gold standard methodology requires ex vivo numerical expansion of these cells on artificial antigen-presenting cells (AaPCs) for 4 weeks to generate CAR T cells of presumed sufficient quantity and function for clinical applications. METHOD: We engineered EGFRvIII-specific CAR T cells and monitored phenotypic changes throughout their ex vivo manufacturing. To reduce the culture time required to generate the CAR T-cell population, we selected for T cells in peripheral blood mononuclear cells prior to CAR modification (to eliminate the competing NK cell population). RESULTS: While we found increased expression of exhaustion markers (such as PD-1, PD-L1, TIM-3, and LAG-3) after 2 weeks in culture, whose levels continued to rise over time, we were able to generate a CAR+ T-cell population with comparable CAR expression and cell numbers in 2 weeks, thereby reducing manufacturing time by 50%, with lower expression of immune exhaustion markers. The CAR T cells manufactured at 2 weeks showed superior therapeutic efficacy in mice bearing established orthotopic EGFRvIII+ U87 gliomas. CONCLUSION: These findings demonstrate a novel, rapid method to generate CAR T cells by non-viral modification that results in CAR T cells superior in phenotype and function and further emphasizes that careful monitoring of CAR T-cell phenotype prior to infusion is critical for generating an optimal CAR T-cell product with full antitumor potential.


Asunto(s)
Receptores ErbB/inmunología , Glioma , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Transfección/métodos , Animales , Antígenos de Neoplasias/inmunología , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Infect Dis ; 211(3): 486-96, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25156558

RESUMEN

Chronic infections result in T-cell exhaustion, a state of functional unresponsiveness. To control the infection, it is important to salvage the exhausted T cells. In this study, we delivered signals through Toll-like receptor 2 (TLR-2) to reinvigorate functionality in chronically activated T-helper type 1 (Th1) cells. This process significantly augmented the expression of T-bet, interferon γ, interleukin 2, and the antiapoptotic molecule Bcl-2, whereas it dampened the display of the exhaustion markers programmed death receptor 1 (PD-1) and lymphocyte activation gene 3 (Lag-3). Additionally, TLR-2 signaling bolstered the ability of chronically stimulated Th1 cells to activate B cells. Finally, the results were substantiated by observing reduced lung pathology upon administration of TLR-2 agonist in the chronic infection model of tuberculosis. These data demonstrated the importance of TLR-2 in rescuing chronically activated Th1 cells from undergoing exhaustion. This study will pave a way for targeting TLR-2 in developing therapeutic strategies to treat chronic diseases involving loss of Th1 cell function.


Asunto(s)
Células TH1/inmunología , Receptor Toll-Like 2/inmunología , Animales , Antígenos CD/inmunología , Femenino , Interferón gamma/inmunología , Interleucina-2/inmunología , Pulmón/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Transducción de Señal/inmunología , Tuberculosis Pulmonar/inmunología , Proteína del Gen 3 de Activación de Linfocitos
5.
Ocul Immunol Inflamm ; : 1-10, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37315178

RESUMEN

This work analyzed exhaustion markers in CD8+ T-cell subpopulations in 21 samples of peripheral blood mononuclear cells (PBMCs) from individuals with ocular toxoplasmosis (n = 9), chronic asymptomatic toxoplasmosis (n = 7), and non-infected people (n = 5) by using RT-qPCR and flow cytometry techniques. The study found that gene expression of PD-1 and CD244, but not LAG-3, was higher in individuals with ocular toxoplasmosis versus individuals with asymptomatic infection or uninfected. Expression of PD1 in CD8+ central memory (CM) cells was higher in nine individuals with toxoplasmosis versus five uninfected individuals (p = .003). After ex vivo stimulation, an inverse correlation was found between the exhaustion markers and quantitative clinical characteristics (lesion size, recurrence index, and number of lesions). A total exhaustion phenotype was found in 55.5% (5/9) of individuals with ocular toxoplasmosis. Our results suggest that the CD8+ exhaustion phenotype is involved in the pathogenesis of ocular toxoplasmosis.

6.
Cancer Drug Resist ; 6(3): 642-655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842239

RESUMEN

The introduction of immune checkpoint inhibitor (ICI) has revolutionized the treatment of metastatic renal cell carcinoma (mRCC) and has dramatically improved the outcomes of patients. The use of monotherapy or combinations of ICIs targeting PD-1/PD-L1 and CTLA-4, as well as the addition of ICIs with tyrosine kinase inhibitors, has significantly enhanced the overall survival of mRCC patients. Despite these promising results, there remains a subset of patients who either do not respond to treatment (primary resistance) or develop resistance to therapy over time (acquired resistance). Understanding the mechanisms underlying the development of resistance to ICI treatment is crucial in the management of mRCC, as they can be used to identify new targets for innovative therapeutic strategies. Currently, there is an unmet need to develop new predictive and prognostic biomarkers that can aid in the development of personalized treatment options for mRCC patients. In this review, we summarize several mechanisms of ICI resistance in RCC, including alterations in tumor microenvironment, upregulation of alternative immune checkpoint pathways, and genetic and epigenetic changes. Additionally, we highlight potential strategies that can be used to overcome resistance, such as combination therapy, targeted therapy, and immune modulation.

7.
Front Immunol ; 13: 999163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275657

RESUMEN

Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.


Asunto(s)
Enfermedad Injerto contra Huésped , Leucemia Mieloide Aguda , Humanos , Transfusión de Linfocitos/métodos , Trasplante Homólogo/efectos adversos , Linfocitos T CD8-positivos , Citometría de Flujo , Subgrupos de Linfocitos T , Recurrencia , Leucemia Mieloide Aguda/terapia , Análisis por Conglomerados
8.
Biomedicines ; 10(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625811

RESUMEN

Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body's immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.

9.
Pathog Immun ; 4(1): 39-65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815625

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide. Due to their shared routes of transmission, approximately 10% of HIV-infected patients worldwide are chronically coinfected with HBV. Additionally, liver disease has become a major cause of morbidity and mortality in HBV/HIV coinfected patients due to prolonged survival with the success of antiretroviral therapy. The relationship between immune exhaustion markers (PD-1/PD-L1) and apoptotic markers such as Fas/FasL, TGFß1, TNF-α, and Th1/Th2 cytokines are not clearly delineated in HBV/HIV coinfection. METHODS: Levels of soluble Fas/FasL, TGFß1, TNF-α, and sPD-1/sPD-L1 as well as Th1 and Th2 cytokines were evaluated in the sera of HBV-monoinfected (n = 30) and HBV/HIV-coinfected (n = 15) patients and compared to levels in healthy controls (n = 20). RESULTS: HBV-monoinfected patients had significantly lower levels of the anti-inflammatory cytokine IL-4 (P < 0.05) and higher levels of apoptotic markers sFas, sFasL, and TGFß-1 (P < 0.001) compared to healthy controls. Coinfection with HIV was associated with higher levels of sFas, TNF-α, and sPD-L1 (P < 0.005), and higher levels of the pro-inflammatory cytokines IL-6, IL-8, and IL-12p70 (P < 0.05) compared to healthy controls. Patients with HBV infection had a unique biomarker clustering profile comprised of IFN-γ, IL12p70, IL-10, IL-6, and TNF-α that was distinct from the profile of the healthy controls, and the unique HIV/HBV profile comprised GM-CSF, IL-4, IL-2, IFN-γ, IL12p70, IL-7, IL-10, and IL-1ß. In HBV monoinfection a significant correlation between sFasL and PD1(r = 0.46, P = < 0.05) and between sFas and PDL1 (r = 0.48, P = <0.01) was observed. CONCLUSION: HBV-infected and HBV/HIV-coinfected patients have unique apoptosis and inflammatory biomarker profiles that distinguish them from each other and healthy controls. The utilization of those unique biomarker profiles for monitoring disease progression or identifying individuals who may benefit from novel immunotherapies such as anti-PD-L1 or anti-PD-1 checkpoint inhibitors appears promising and warrants further investigation.

10.
Front Microbiol ; 10: 2214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611857

RESUMEN

To date, most assays for measuring the human immunodeficiency virus (HIV-1) reservoir do not include memory CD4+ T-cells expressing the activation marker, human leukocyte antigen-antigen D related (HLA-DR). However, little is known concerning the role these cells play in maintaining persistent HIV-1 during effective antiretroviral therapy (ART). To address this issue, we examined, cellular activation/exhaustion markers (Ki67, CCR5, PD-1, Lag-3 and Tim-3) and viral gag-pol DNA sequences within HLA-DR- and HLA-DR+ memory CD4+ T-cell subsets longitudinally from the peripheral blood of six participants over 3 to ≥15 years of effective therapy. HLA-DR expression was readily detected during the study period in all participants. The average expression levels of CCR5, PD-1 and Tim-3 were higher on the HLA-DR+ T-cell subset whereas the average of LAG-3 expression was higher on their HLA-DR- counterpart. The proportion of HIV-infected cells increased within the HLA-DR+ subset by an average of 18% per year of ART whereas the frequency of infected HLA-DR- T-cells slightly decreased over time (5% per year). We observed that 20-33% of HIV-DNA sequences from the early time points were genetically identical to viral sequences from the last time point within the same cell subset during ART. This indicates that a fraction of proviruses persists within HLA-DR+ and HLA-DR- T-cell subsets during prolonged ART. Our HIV-DNA sequence analyses also revealed that cells transitioned between the HLA-DR+ and HLA-DR- phenotypes. The Ki67 expression, a marker for cellular proliferation, and the combined markers of Ki67/PD-1 averaged 19-fold and 22-fold higher on the HLA-DR+ T-cell subset compared to their HLA-DR- counterpart. Moreover, cellular proliferation, as reflected by the proportion of genetically identical HIV-DNA sequences, increased within both T-cell subsets over the study period; however, this increase was greater within the HLA-DR+ T-cells. Our research revealed that cellular transition and proliferation contribute to the persistence of HIV in HLA-DR+ and HLA-DR- T-cell subsets during prolonged therapy. As such, the HIV reservoir expands during effective ART when both the HLA-DR+ and HLA-DR- cell subsets are included, and therapeutic interventions aimed at reducing the HIV-1 reservoir should target HLA-DR+ and HLA-DR- T-cells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda