Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36202091

RESUMEN

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , Embarazo , Lactante , Femenino , Humanos , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Xenobióticos/toxicidad , Desarrollo Fetal
2.
Circ Res ; 134(8): 1029-1045, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603473

RESUMEN

There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.


Asunto(s)
Contaminación del Aire , Fibrilación Atrial , Sistema Cardiovascular , Exposoma , Humanos , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Exposición a Riesgos Ambientales/efectos adversos
3.
Circ Res ; 134(9): 1083-1097, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662860

RESUMEN

Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Humanos , Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Factores de Riesgo Cardiometabólico , Exposoma , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Material Particulado/efectos adversos
4.
Annu Rev Pharmacol Toxicol ; 62: 383-404, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34499523

RESUMEN

The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research.


Asunto(s)
Exposoma , Receptores de Hidrocarburo de Aril , Homeostasis , Humanos , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Xenobióticos/metabolismo
5.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38227765

RESUMEN

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Asunto(s)
Material Particulado , Emisiones de Vehículos , Humanos , Material Particulado/efectos adversos , Emisiones de Vehículos/toxicidad , Uniones Estrechas , Alérgenos , Estrés Oxidativo , Células Epiteliales
6.
Mol Cell Proteomics ; 22(6): 100561, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119971

RESUMEN

The world has witnessed a steady rise in both non-infectious and infectious chronic diseases, prompting a cross-disciplinary approach to understand and treating disease. Current medical care focuses on treating people after they become patients rather than preventing illness, leading to high costs in treating chronic and late-stage diseases. Additionally, a "one-size-fits all" approach to health care does not take into account individual differences in genetics, environment, or lifestyle factors, decreasing the number of people benefiting from interventions. Rapid advances in omics technologies and progress in computational capabilities have led to the development of multi-omics deep phenotyping, which profiles the interaction of multiple levels of biology over time and empowers precision health approaches. This review highlights current and emerging multi-omics modalities for precision health and discusses applications in the following areas: genetic variation, cardio-metabolic diseases, cancer, infectious diseases, organ transplantation, pregnancy, and longevity/aging. We will briefly discuss the potential of multi-omics approaches in disentangling host-microbe and host-environmental interactions. We will touch on emerging areas of electronic health record and clinical imaging integration with muti-omics for precision health. Finally, we will briefly discuss the challenges in the clinical implementation of multi-omics and its future prospects.


Asunto(s)
Genómica , Neoplasias , Humanos , Genómica/métodos , Proteómica/métodos , Multiómica , Metabolómica/métodos
7.
Mass Spectrom Rev ; 42(6): 2466-2486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36062854

RESUMEN

Compared with the rapid advances in genomics leading to broad understanding of human disease, the linkage between chemical exposome and diseases is still under investigation. High-resolution mass spectrometry (HRMS) is expected to accelerate the process via relatively accurate and precise biomonitoring of human exposome. This review covers recent advancements in biomonitoring of exposed environmental chemicals (chemical exposome) using HRMS described in the 124 articles that resulted from a systematic literature search on Medline and Web of Science databases. The analytical strategic aspects, including the selection of specimens, sample preparation, instrumentation, untargeted versus targeted analysis, and workflows for MS-based biomonitoring to explore the environmental chemical space of human exposome, are deliberated. Applications of HRMS in human exposome investigation are presented by biomonitoring (1) exposed chemical compounds and their biotransformation products; (2) DNA/protein adducts; and (3) endogenous compound perturbations. Challenges and future perspectives are also discussed.

8.
Hum Reprod ; 39(3): 612-622, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305414

RESUMEN

STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Azoospermia , Oligospermia , Masculino , Humanos , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Azoospermia/genética , Oligospermia/genética , Exposición a Riesgos Ambientales
9.
Allergy ; 79(2): 432-444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37804001

RESUMEN

BACKGROUND: Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS: C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS: Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION: Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.


Asunto(s)
Anafilaxia , Hipersensibilidad al Cacahuete , Ratones , Animales , Ratones Endogámicos C57BL , Polvo , Citocinas/metabolismo , Material Particulado/efectos adversos
10.
Environ Sci Technol ; 58(20): 8771-8782, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728551

RESUMEN

This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Microbioma Gastrointestinal , Humanos , Masculino , Londres , Femenino , Persona de Mediana Edad , Estudios Cruzados , Contaminación por Tráfico Vehicular , Dióxido de Nitrógeno
11.
Environ Sci Technol ; 58(9): 4104-4114, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373080

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Humanos , Anciano , Fluorocarburos/análisis , Contaminantes Ambientales/análisis , Metabolómica , Ácidos Grasos
12.
Environ Sci Technol ; 58(12): 5229-5243, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466915

RESUMEN

Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.


Asunto(s)
Exposoma , Enfermedades Neurodegenerativas , Hidrocarburos Policíclicos Aromáticos , Dispositivos Electrónicos Vestibles , Humanos , Espacios Confinados , Transcriptoma , Monitoreo del Ambiente/métodos , Siliconas
13.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641325

RESUMEN

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Asunto(s)
Exposición a Riesgos Ambientales , Exposoma , Humanos , Biología Molecular
14.
Environ Sci Technol ; 58(13): 5695-5704, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502526

RESUMEN

The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Cardiovasculares , Exposoma , Hidrocarburos Halogenados , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Enfermedades Cardiovasculares/epidemiología , Hidrocarburos , Hospitales
15.
Environ Sci Technol ; 58(12): 5383-5393, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478982

RESUMEN

Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.


Asunto(s)
Dislipidemias , Exposoma , Hipertensión , Humanos , Teorema de Bayes , Obesidad/epidemiología , Cabello , Exposición a Riesgos Ambientales
16.
Environ Sci Technol ; 58(5): 2236-2246, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252460

RESUMEN

Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1-18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs' gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.


Asunto(s)
Microbioma Gastrointestinal , Micotoxinas , Lactante , Recién Nacido , Femenino , Humanos , Micotoxinas/orina , Monitoreo Biológico , ARN Ribosómico 16S , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis
17.
Environ Sci Technol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984754

RESUMEN

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

18.
Environ Sci Technol ; 58(1): 75-89, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153287

RESUMEN

Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.


Asunto(s)
Exposoma , Ácidos Nucleicos , Espectrometría de Masas en Tándem/métodos , Aductos de ADN , Flujo de Trabajo , Programas Informáticos , ARN
19.
Environ Sci Technol ; 58(1): 258-268, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38149779

RESUMEN

Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.


Asunto(s)
Dioxinas , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análisis , Bifenilos Policlorados/química , Metaboloma
20.
Environ Sci Technol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984753

RESUMEN

Due to the increasing number of chemicals released into the environment, nontarget screening (NTS) analysis is a necessary tool for providing comprehensive chemical analysis of environmental pollutants. However, NTS workflows encounter challenges in detecting both known and unknown pollutants with common chromatography high-resolution mass spectrometry (HRMS) methods. Identification of unknowns is hindered by limited elemental composition information, and quantification without identical reference standards is prone to errors. To address these issues, we propose the use of inductively coupled plasma mass spectrometry (ICP-MS) as an element-specific detector. ICP-MS can enhance the confidence of compound identification and improve quantification in NTS due to its element-specific response and unambiguous chemical composition information. Additionally, mass balance calculations for individual elements (F, Br, Cl, etc.) enable assessment of total recovery of those elements and evaluation of NTS workflows. Despite its benefits, implementing ICP-MS in NTS analysis and environmental regulation requires overcoming certain shortcomings and challenges, which are discussed herein.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda