Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931608

RESUMEN

The concept of an optical profiler based on optical resonance was proposed, highlighting the initial requirements for mode number estimation. We proposed a method for estimating the longitudinal mode number of a laser propagating in an external cavity diode laser with high accuracy, utilizing dual-periodic diffraction gratings. These gratings were fabricated using interference lithography. To estimate the mode number, the wavelengths of two different modes are compared. Therefore, the greater the difference between the wavelengths, the higher the accuracy of the mode number determination. While the mode number difference was approximately 35 when using a conventional diffraction grating, this could be increased by a factor of 20 to around 700 using the dual-periodic grating. The relative accuracy achieved was 1.4 × 10-5.

2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400261

RESUMEN

In the field of inter-satellite laser communication, achieving high-quality communication and compensating for the Doppler frequency shift caused by relative motion necessitate lasers with narrow linewidths, low phase noise, and the ability to achieve mode-hop-free tuning within a specific range. To this end, this paper investigates a novel external cavity diode laser (ECDL) with a frequency-selective F-P etalon structure, leveraging the external cavity F-P etalon structure in conjunction with an auxiliary filter to achieve single longitudinal mode selection. The laser undergoes linewidth testing using a delayed self-heterodyne beating method, followed by the testing of its phase noise and frequency noise characteristics using a noise analyzer, yielding beat spectra and noise power spectral density profiles. Furthermore, the paper introduces an innovative bidirectional temperature-scanning laser method to achieve optimal laser-operating point selection and mode-hop-free tuning. The experimental results showcase that the single longitudinal mode spectral side-mode suppression ratio (SMSR) is around 70 dB, and the output power exceeds 10 mW. Enhancing the precision of the F-P etalon leads to a more pronounced suppression of low-frequency phase noise, reducing the Lorentzian linewidth from the initial 10 kHz level to a remarkable 5 kHz level. The bidirectional temperature-scanning laser method not only allows for the selection of the optimal operating point but also enables mode-hop-free tuning within 160 pm.

3.
Sensors (Basel) ; 21(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34577462

RESUMEN

We herein report a simultaneous frequency stabilization of two 780-nm external cavity diode lasers using a precision wavelength meter (WLM). The laser lock performance is characterized by the Allan deviation measurement in which we find σy=10-12 at an averaging time of 1000 s. We also obtain spectral profiles through a heterodyne spectroscopy, identifying the contribution of white and flicker noises to the laser linewidth. The frequency drift of the WLM is measured to be about 2.0(4) MHz over 36 h. Utilizing the two lasers as a cooling and repumping field, we demonstrate a magneto-optical trap of 87Rb atoms near a high-finesse optical cavity. Our laser stabilization technique operates at broad wavelength range without a radio frequency element.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda