Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Biophys Res Commun ; 720: 150099, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749192

RESUMEN

Binding of activated factor IX (fIXa) to the phosphatidylserine-expressing procoagulant platelets is a critical step in blood coagulation, which is necessary for the membrane-dependent intrinsic tenase complex assembly and factor X activation. However, the nature and parameters of the fIXa binding sites on the procoagulant platelet surface remain unclear. We used flow cytometry to elucidate the quantitative details of the fluorescently labeled fIXa binding to gel-filtered activated platelets. FIXa bound to the procoagulant platelet subpopulation only, with the parameters (maximal number of binding sites at 58900 ± 3400, Kd at 1000 ± 170 nM) similar to binding observed with phospholipid vesicles. No specific high-affinity binding sites for fIXa were detected, and binding proceeded similarly for different methods of procoagulant platelet production (thrombin, thrombin receptor activation peptide, collagen-related peptide, their combinations, or calcium ionophore A23187). Factor VIII, known to form a high affinity complex with fIXa, enhanced fIXa binding to platelets. In contrast, only competition effects were observed for factor X, which binds fIXa with much lower affinity. Unexpectedly, fIXa itself, fIX, and prothrombin also dose-dependently enhance fIXa binding at concentrations below 1000 nM, suggesting the formation of membrane-bound fIXa dimers and fIXa-prothrombin complexes on platelets. These findings provide a novel perspective on the fIXa binding site on procoagulant platelets, which does not have any major differences from pure phospholipid-based model membranes, exhibits inherently low affinity (3-5 orders of magnitude below the physiologically relevant fIXa concentration) but is significantly enhanced by its cofactor VIII, and regulated by previously unknown membrane interactions.


Asunto(s)
Plaquetas , Factor IXa , Unión Proteica , Humanos , Plaquetas/metabolismo , Factor IXa/metabolismo , Sitios de Unión , Coagulación Sanguínea , Trombina/metabolismo , Factor X/metabolismo , Citometría de Flujo , Fosfatidilserinas/metabolismo , Proteínas Portadoras , Péptidos
2.
J Membr Biol ; 255(6): 733-737, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36098799

RESUMEN

Blood coagulation is an intricate process, and it requires precise control of the activities of pro- and anticoagulant factors and sensitive signaling systems to monitor and respond to blood vessel insults. These requirements are fulfilled by phosphatidylserine, a relatively miniscule-sized lipid molecule amid the myriad of large coagulation proteins. This review limelight the role of platelet membrane phosphatidylserine (PS) in regulating a key enzymatic reaction of blood coagulation; conversion of factor X to factor Xa by the enzyme factor IXa and its cofactor factor VIIIa. PS is normally located on the inner leaflet of the resting platelet membrane but appears on the outer leaflet surface of the membrane surface after an injury happens. Human platelet activation leads to exposure of buried PS molecules on the surface of the platelet-derived membranes and the exposed PS binds to discrete and specific sites on factors IXa and VIIIa. PS binding to these sites allosterically regulates both factors IXa and VIIIa. The exposure of PS and its binding to factors IXa/VIIIa is a vital step during clotting. Insufficient exposure or a defective binding of PS to these clotting proteins is responsible for various hematologic diseases which are discussed in this review.


Asunto(s)
Factor IXa , Factor VIIIa , Humanos , Factor VIIIa/química , Factor VIIIa/metabolismo , Factor IXa/química , Factor IXa/metabolismo , Fosfatidilserinas/química , Factor X/metabolismo , Factor Xa/metabolismo , Cinética , Sitios de Unión
3.
J Biol Chem ; 295(45): 15198-15207, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32859749

RESUMEN

Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.


Asunto(s)
Factor IXa/metabolismo , Factor VIIIa/metabolismo , Factor X/metabolismo , Sitios de Unión , Humanos , Cinética , Proteínas Recombinantes/metabolismo
4.
Bioorg Med Chem Lett ; 30(15): 127279, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32527459

RESUMEN

The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.


Asunto(s)
Descubrimiento de Drogas , Factor IXa/antagonistas & inhibidores , Inhibidores del Factor Xa/farmacología , Pirimidinas/farmacología , Relación Dosis-Respuesta a Droga , Factor IXa/metabolismo , Inhibidores del Factor Xa/síntesis química , Inhibidores del Factor Xa/química , Humanos , Estructura Molecular , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
5.
Arterioscler Thromb Vasc Biol ; 38(4): 816-828, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29419409

RESUMEN

OBJECTIVE: PS (protein S) is a plasma protein that directly inhibits the coagulation FIXa (factor IXa) in vitro. Because elevated FIXa is associated with increased risk of venous thromboembolism, it is important to establish how PS inhibits FIXa function in vivo. The goal of this study is to confirm direct binding of PS with FIXa in vivo, identify FIXa amino acid residues required for binding PS in vivo, and use an enzymatically active FIXa mutant that is unable to bind PS to measure the significance of PS-FIXa interaction in hemostasis. APPROACH AND RESULTS: We demonstrate that PS inhibits FIXa in vivo by associating with the FIXa heparin-binding exosite. We used fluorescence tagging, immunohistochemistry, and protein-protein crosslinking to show in vivo interaction between FIXa and PS. Importantly, platelet colocalization required a direct interaction between the 2 proteins. FIXa and PS also coimmunoprecipitated from plasma, substantiating their interaction in a physiological milieu. PS binding to FIXa and PS inhibition of the intrinsic Xase complex required residues K132, K126, and R170 in the FIXa heparin-binding exosite. A double mutant, K132A/R170A, retained full activity but could not bind to PS. Crucially, Hemophilia B mice infused with FIXa K132A/R170A displayed an accelerated rate of fibrin clot formation compared with wild-type FIXa. CONCLUSIONS: Our findings establish PS as an important in vivo inhibitor of FIXa. Disruption of the interaction between PS and FIXa causes an increased rate of thrombus formation in mice. This newly discovered function of PS implies an unexploited target for antithrombotic therapeutics.


Asunto(s)
Plaquetas/metabolismo , Factor IXa/metabolismo , Hemofilia B/sangre , Hemostasis , Heparina/metabolismo , Proteína S/metabolismo , Trombosis de la Vena/prevención & control , Animales , Sitios de Unión , Unión Competitiva , Coagulantes/administración & dosificación , Modelos Animales de Enfermedad , Factor IX/genética , Factor IX/metabolismo , Factor IXa/administración & dosificación , Factor IXa/genética , Hemofilia B/tratamiento farmacológico , Hemofilia B/genética , Hemostasis/efectos de los fármacos , Humanos , Infusiones Intravenosas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Trombosis de la Vena/sangre , Trombosis de la Vena/genética
6.
Arterioscler Thromb Vasc Biol ; 38(1): 266-274, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097362

RESUMEN

OBJECTIVE: Combined oral contraceptives induce a reversible hypercoagulable state with an enhanced risk of venous thromboembolism, but the underlying mechanism(s) remain unclear. Subjects on combined oral contraceptives also demonstrate a characteristic resistance to APC (activated protein C) in the thrombin generation assay. Here, we report the potential role of plasma factor IXa (FIXa) as a mechanism for hormone-induced systemic hypercoagulability. APPROACH AND RESULTS: A novel assay was used to determine FIXa activity in plasma samples from volunteer blood donors. Plasma from 36 premenopausal females on hormonal contraception and 35 not on hormonal contraception, 35 postmenopausal females, and 10 males were analyzed for FIXa activity, total PS (protein S), total tissue factor pathway inhibitor (TFPI), and TFPI-α antigen. Premenopausal females on hormonal contraception demonstrated significantly increased FIXa activity and decreased TFPI-α compared with the other groups. Remarkably, FIXa values were not normally distributed in the hormonal contraception group, but skewed toward the high end. Plasma FIXa activity inversely correlated with both TFPI-α and total PS antigen. Ex vivo determination of TF-dependent FIX activation in FV-deficient plasma demonstrated that inhibitory anti-TFPI antibodies enhanced FIXa generation by 2- to 3-fold, whereas addition of 75 nmol/L PS reduced FIXa generation by ≈2-fold. Further, increasing FIXa concentration enhanced APC resistance during TF-triggered plasma thrombin generation. CONCLUSIONS: Elevation of plasma FIXa activity in association with reductions in TFPI-α and PS is a potential mechanism for systemic hypercoagulability and resistance to APC in premenopausal females on hormonal contraception.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Anticonceptivos Orales Combinados/administración & dosificación , Factor IXa/metabolismo , Premenopausia/sangre , Resistencia a la Proteína C Activada/sangre , Resistencia a la Proteína C Activada/inducido químicamente , Adulto , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Lipoproteínas/sangre , Masculino , Persona de Mediana Edad , Proteína S/metabolismo , Factores de Riesgo , Factores Sexuales , Trombofilia/sangre , Trombofilia/inducido químicamente , Regulación hacia Arriba , Adulto Joven
7.
Haemophilia ; 24(5): 815-822, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30112856

RESUMEN

INTRODUCTION: The thrombin generation assay (TGA) can be used to monitor factor replacement therapy in patients with haemophilia. The TGA assay is typically performed using tissue factor as the reaction activator; however, activating with FIXa or FXIa can enhance assay sensitivity when FVIII < 1%. AIMS: To evaluate the sensitivity of the TGA when FIXa (5 nmol/L) and FXIa (0.22 nmol/L) are used to activate the assay in platelet-poor plasma and to compare these data to the one-stage and chromogenic assays. METHODS: Plasma from 10 severe FVIII-deficient subjects was supplemented with FVIII (0%, 0.1%, 0.4%, 1.2%, 4%, 11% and 33%), using either Novo Eight® , Advate® , Eloctate® , turoctocog alfa pegol or a control standard. The one-stage and chromogenic assays quantified the FVIII levels. The TGA assay was activated using either FIXa or FXIa. RESULTS: Both FIXa- and FXIa-activated TGA were sensitive across FVIII concentrations, with intra-assay coefficient of variation (CV) < 10%. The FXIa-activated assay had 25% CV at the lowest level of FVIII compared to 10% CV with FIXa activation. There were strong correlations between the FIXa- and FXIa-activated TGA tests (R2  = 0.9912) and between the one-stage and chromogenic assays (R2  = 0.9469). However, there were poor relationships between the TGA tests and one-stage and chromogenic assays. CONCLUSIONS: Both FIXa- and FXIa activation results in similar TGA profiles across a FVIII range of 0.1%-33%; however, FIXa activation was more robust at the lowest levels of FVIII compared with FXIa activation.


Asunto(s)
Factor VIII/metabolismo , Factor XIa/metabolismo , Hemofilia A/sangre , Trombina/metabolismo , Humanos
9.
Bioorg Med Chem Lett ; 25(11): 2321-5, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25937013

RESUMEN

Two high-throughput screening hits were investigated for SAR against human factor IXa. Both hits feature a benzamide linked to a [6-5]-heteroaryl via an alkyl amine. In the case where this system is a benzimidazolyl-ethyl amine the binding potency for the hit was improved >500-fold, from 9 µM to 0.016 µM. For the other hit, which contains a tetrahydropyrido-indazole amine, potency was improved 20-fold, from 2 µM to 0.09 µM. X-ray crystal structures were obtained for an example of each class which improved understanding of the binding, and will enable further drug discovery efforts.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Factor IXa/antagonistas & inhibidores , Sitios de Unión , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica
10.
Biochem Biophys Res Commun ; 452(3): 408-14, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25157807

RESUMEN

Coagulation factor X (FX) zymogen activation by factor IXa (FIXa) enzyme plays a critical role in the middle-phase of coagulation cascade. The activation process is catalytically inert and requires FIXa binding and complex formation with co-factor VIIIa (FVIIIa). In order to understand the structural details of the FVIIIa:FIXa complex, we employed knowledge-driven protein-protein docking and aqueous-phase MD refinement methods to develop a stable structural complex between FVIIIa and FIXa. The model shows that all four domains of FIXa wrap across FVIIIa that spans the co-factor binding surface of A2, A3 and C1 domains. The region surrounding the 558-helix of the A2-domain of FVIIIa is predicted to be the key interaction site with the helical segments of Lys293-Lys301 and Asp332-Arg338 residues of the serine-protease domain of FIXa. The hydrophobic helical stack between the GLA and EGF1 domains of FIXa is predicted to be primary interacting region with the A3-C2 domain interface of FVIIIa.


Asunto(s)
Aminoácidos/química , Factor IXa/química , Factor VIIIa/química , Sitios de Unión , Coagulación Sanguínea , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Soluciones , Electricidad Estática
11.
J Thromb Haemost ; 22(6): 1605-1615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460838

RESUMEN

BACKGROUND: Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES: We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS: We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS: We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION: Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales Humanizados , Factores de Coagulación Sanguínea , Células Endoteliales , Factor Xa , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factores de Coagulación Sanguínea/metabolismo , Células Cultivadas , Coagulantes/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor IX/metabolismo , Factor Xa/efectos de los fármacos , Factor Xa/metabolismo , Hemofilia A/tratamiento farmacológico , Hemofilia A/sangre , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
12.
Res Pract Thromb Haemost ; 8(1): 102338, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38433974

RESUMEN

Background: Factor (F)IXa activity has been detected in human plasma and may impact thrombotic risk. Current FIXa activity assays are complex and cumbersome. Objectives: To develop a reproducible enzyme-linked immunosorbent assay (ELISA) using a novel monoclonal antibody that detects total FIXa in human plasma. Methods: A monoclonal antibody was raised against the new N-terminus exposed upon activation of FIX to FIXa by cleavage after R226. This antibody is specific for FIXa protease and does not recognize FIX zymogen or FIXα. The antibody was used to develop a FIXa-specific ELISA capable of quantifying total FIXa (free FIXa and FIXa-antithrombin complex) in human plasma. Total FIXa quantified using the ELISA was compared to that of FIXa-antithrombin quantified using modifications of a previously described ELISA. Results: The FIXa-specific ELISA was reproducible and quantified total FIXa in human plasma. Total FIXa levels correlated with FIXa-antithrombin levels. Conclusion: A monoclonal antibody was developed that specifically detects human FIXa protease. A FIXa-specific ELISA using the new antibody is capable of reproducibly measuring total FIXa in human plasma (both free FIXa and FIXa-antithrombin). This assay should facilitate the evaluation of total FIXa levels in a variety of clinical circumstances.

13.
Expert Opin Ther Pat ; 32(4): 381-400, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34991418

RESUMEN

INTRODUCTION: Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED: A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION: FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.


Asunto(s)
Factor IX , Trombosis , Animales , Anticoagulantes/efectos adversos , Factor IX/uso terapéutico , Hemorragia/inducido químicamente , Humanos , Patentes como Asunto , Trombosis/tratamiento farmacológico
14.
Thromb Res ; 204: 1-8, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089982

RESUMEN

BACKGROUND: Cardiac arrest and cardiopulmonary resuscitation (CPR) are associated with activated coagulation and microvascular fibrin deposition with subsequent multiorgan failure and adverse outcome. OBJECTIVES: Activated Factor XI-antithrombin (FXIa-AT) complex, activated Factor IX-antithrombin (FIXa-AT) complex and thrombin-antithrombin (TAT) complex were measured as markers of coagulation activation, and evaluated as independent prognostic indicators in out-of-hospital cardiac arrest (OHCA) patients. METHODS: From February 2007 until December 2010 blood samples were collected in close approximation to CPR from patients with OHCA of assumed cardiac origin. Follow-up samples in survivors were drawn 8-12 h and 24-48 h after hospital admission. All measurements were determined by ELISA. RESULTS: Thirty-seven patients presented with asystole and 77 with ventricular fibrillation as first recorded heart rhythm. At 30-days follow-up, 70 patients (61.4%) had died. All patients had elevated levels of FXIa-AT complex, FIXa-AT complex and TAT. Initial levels were significantly higher in non-survivors compared to 30-days survivors. A significant increase in risk of 30-days all-cause mortality was observed through increasing quartiles of all three biomarkers in univariate Cox regression analysis. Compared to the lowest quartile (Q1), only FXIa-AT complex levels in Q3 (HR 3.17, p = 0.011) and Q2 (HR 3.02, p = 0.016) were independently associated with all-cause mortality in the multivariable analysis. FIXa-AT complex and TAT-complex did not behave as independent predictors. CONCLUSIONS: Complexes of FXIa-AT were independently associated with 30-days survival in OHCA-patients. CLINICAL TRIAL REGISTRATION: ClinicalTrials. gov, NCT02886273.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco Extrahospitalario , Antitrombinas , Factor XIa , Humanos , Pronóstico
15.
J Thromb Haemost ; 18(5): 1171-1182, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32073726

RESUMEN

BACKGROUND: Factor (F) IX/IXa inactivation by plasmin has been studied; however, whether plasmin converts FIXa to a fibrinolytic enhancer is not known. OBJECTIVE: Investigate plasmin proteolysis site(s) in FIXa that inactivates and transforms it into a fibrinolytic enhancer. METHODS: NH2 -terminal sequencing, mass spectrometry analysis, and functional assays. RESULTS: Plasmin in the presence of Ca2+ /phospholipid (PL) rapidly cleaved FIXaß at Lys316↓Gly317 to yield FIXaγ followed by a slow cleavage at Lys413↓Leu414 to yield FIXaδ. FIXaγ/FIXaδ migrated indistinguishably from FIXaß in nondenaturing gel system indicating that C-terminal residues 317-415/317-413 of heavy chain remain noncovalently associated with FIXaγ/FIXaδ. However, as compared with FIXaß, FIXaγ or FIXaγ/FIXaδ (25-75 mixture, 8-hour/24-hour incubation analysis by mass spectrometry) was impaired ~ 10-fold in hydrolyzing synthetic substrate CBS 31.39 (CH3-SO2-D-Leu-Gly-Arg-pNA), ~ 30-fold (~ 5-fold higher Km , ~ 6-fold lower kcat ) in activating FX in a system containing Ca2+ /PL, and ~ 650-fold in a system containing Ca2+ /PL and FVIIIa. Further, FIXaγ or FIXaγ/FIXaδ bound FVIIIa with ~ 60-fold reduced affinity compared with FIXaß. Additionally, in ligand blots, plasminogen or diisopropylfluorophosphate-inhibited plasmin (DIP-plasmin) bound FIXaγ and FIXaδ but not FIXaß. This interaction was prevented by ε-aminocaproic acid or carboxypeptidase B treatment suggesting that plasminogen/DIP-plasmin binds to FIXaγ/FIXaδ through newly generated C-terminal Lys316 and Lys413. Importantly, FIXaγ/FIXaδ mixture but not FIXaγ enhanced tissue plasminogen activator (tPA)-mediated plasminogen activation in a concentration dependent manner. Similarly, FIXaγ/FIXaδ mixture but not FIXaγ enhanced tPA-induced clot lysis in FIX-depleted plasma. CONCLUSION: Plasmin cleavage at Lys316↓Gly317 abrogates FIXaß coagulant activity, whereas additional cleavage at Lys413↓Leu414 converts it into a fibrinolytic enhancer.


Asunto(s)
Factor IXa , Fibrinolisina , Calcio/metabolismo , Factor IXa/metabolismo , Fibrinolisina/metabolismo , Humanos , Fosfolípidos , Proteolisis , Activador de Tejido Plasminógeno/metabolismo
16.
J Thromb Haemost ; 18(2): 364-372, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31675465

RESUMEN

BACKGROUND: The identity of the amino acid regions of factor VIII (FVIII) that contribute to factor IXa (FIXa) and von Willebrand factor (VWF) binding has not been fully resolved. Previously, we observed that replacing the FVIII C1 domain for the one of factor V (FV) markedly reduces VWF binding and cofactor function. Compared to the FV C1 domain, this implies that the FVIII C1 domain comprises unique surface-exposed elements involved in VWF and FIXa interaction. OBJECTIVE: The aim of this study is to identify residues in the FVIII C1 domain that contribute to VWF and FIXa binding. METHODS: Structures and primary sequences of FVIII and FV were compared to identify surface-exposed residues unique to the FVIII C1 domain. The identified residues were replaced with alanine residues to identify their role in FIXa and VWF interaction. This role was assessed employing surface plasmon resonance analysis studies and enzyme kinetic assays. RESULTS: Five surface-exposed hydrophobic residues unique to the FVIII C1 domain, ie, F2035, F2068, F2127, V2130, I2139 were identified. Functional analysis indicated that residues F2068, V2130, and especially F2127 contribute to VWF and/or FIXa interaction. Substitution into alanine of the also surface-exposed V2125, which is spatially next to F2127, affected only VWF binding. CONCLUSION: The surface-exposed hydrophobic residues in C1 domain contribute to cofactor function and VWF binding. These findings provide novel information on the fundamental role of the C1 domain in FVIII life cycle.


Asunto(s)
Hemostáticos , Factor de von Willebrand , Factor IXa , Factor VIII , Humanos , Dominios Proteicos
17.
J Thromb Haemost ; 17(4): 574-584, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30725510

RESUMEN

Essentials Consensus sequence and biochemical data suggest a Na+ -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na+ -site not observed earlier. Molecular dynamics simulations data support that Na+  ± Ca2+ promote FIXa protease domain stability. Sulfate ions found in the protease domain mimic heparin sulfate binding mode in FIXa. SUMMARY: Background Activated coagulation factor IX (FIXa) consists of a γ-carboxyglutamic acid domain, two epidermal growth factor-like (EGF) domains, and a C-terminal protease domain. Consensus sequence and biochemical data support the existence of a Na+ -site in the FIXa protease domain. However, soaking experiments or crystals grown in high concentration of ammonium sulfate did not reveal a Na+ -site in wild-type or mutant FIXa EGF2/protease domain structure. Objective Determine the structure of the FIXa EGF2/protease domain in the presence of Na+ ; perform molecular dynamics (MD) simulations to explore the role of Na+ in stabilizing FIXa structure. Methods Crystallography, MD simulations, and modeling heparin binding to FIXa. Results Crystal structure at 1.37-Å resolution revealed that Na+ is coordinated to carbonyl groups of residues 184A, 185, 221A, and 224 in the FIXa protease domain. The Na+ -site in FIXa is similar to that of FXa and is linked to the Asp189 S1-site. In MD simulations, Na+ reduced fluctuations in residues 217-225 (Na+ -loop) and 70-80 (Ca2+ -loop), whereas Ca2+ reduced fluctuations only in residues of the Ca2+ -loop. Ca2+ and Na+ together reduced fluctuations in residues of the Ca2+ -loop and Na+ -loop (residues 70-80, 183-194, and 217-225). Moreover, we observed four sulfate ions that make salt bridges with FIXa protease domain Arg/Lys residues, which have been implicated in heparin binding. Based upon locations of the sulfate ions, we modeled heparin binding to FIXa, which is similar to the heparin binding in thrombin. Conclusions The FIXa Na+ -site in association with Ca2+ contributes to stabilization of the FIXa protease domain. The heparin binding mode in FIXa is similar to that in thrombin.


Asunto(s)
Coagulación Sanguínea , Cristalografía por Rayos X , Factor IXa/metabolismo , Simulación de Dinámica Molecular , Sodio/metabolismo , Sitios de Unión , Calcio/metabolismo , Estabilidad de Enzimas , Factor IXa/química , Factor IXa/genética , Heparina/metabolismo , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Sodio/química
18.
Eur Heart J Acute Cardiovasc Care ; 8(6): 520-526, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28403626

RESUMEN

BACKGROUND: Residual platelet reactivity is a predictor of poor prognosis in patients with acute coronary syndromes (ACSs) undergoing percutaneous coronary intervention. Thrombin is a major platelet activator and upon initiation of the coagulation cascade, it is subsequently produced downstream of factor IXa, which itself is known to be increased in ACS. Pegnivacogin is a novel RNA-aptamer based factor IXa inhibitor featuring a reversal agent, anivamersen. We hypothesized that pegnivacogin could reduce platelet reactivity. METHODS: Whole blood samples from healthy volunteers were incubated in vitro in the presence and absence of pegnivacogin and platelet reactivity was analysed. In addition, platelet aggregometry was performed in blood samples from ACS patients in the RADAR trial featuring the intravenous administration of pegnivacogin as well as reversal by anivamersen. RESULTS: In vitro, pegnivacogin significantly reduced adenosine diphosphate-induced CD62P-expression (100% vs. 89.79±4.04%, p=0.027, n=9) and PAC-1 binding (100% vs. 83.02±4.08%, p=0.010, n=11). Platelet aggregation was reduced (97.71±5.30% vs. 66.53±9.92%, p=0.013, n=10) as evaluated by light transmission aggregometry. In the presence of the RNA-aptamer reversal agent anivamersen, neither CD62P-expression nor platelet aggregation was attenuated. In patients with ACS treated with aspirin and clopidogrel, residual platelet aggregation was significantly reduced 20 min after intravenous bolus of 1 mg/kg pegnivacogin (100% versus 43.21±8.23%, p=0.020). CONCLUSION: Inhibition of factor IXa by pegnivacogin decreases platelet activation and aggregation in vitro. This effect was negated by anivamersen. In ACS patients, platelet aggregation was significantly reduced after intravenous pegnivacogin. An aptamer-based anticoagulant inhibiting factor IXa therefore might be a promising antithrombotic strategy in ACS patients.


Asunto(s)
Síndrome Coronario Agudo/terapia , Aptámeros de Nucleótidos/uso terapéutico , Factor IXa/antagonistas & inhibidores , Intervención Coronaria Percutánea/métodos , Síndrome Coronario Agudo/mortalidad , Administración Intravenosa , Anticoagulantes/uso terapéutico , Aptámeros de Nucleótidos/administración & dosificación , Aptámeros de Nucleótidos/farmacología , Estudios de Casos y Controles , Humanos , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Agregación Plaquetaria/efectos de los fármacos , Trombina/farmacología
20.
Thromb Res ; 170: 133-141, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30189336

RESUMEN

INTRODUCTION: Abnormalities in the levels and functions of proteins that maintain hemostasis can cause thrombosis. Factor IX (FIX) R338L, i.e., Factor IX Padua, is a hyperactive clotting factor that promotes thrombosis. The R338L mutation increases the clotting rate by 8-fold despite increasing the Factor IXa enzymatic activity by only 2-fold. Protein S (PS) is a natural anticoagulant that directly inhibits FIXa. Because individuals affected by the R338L mutation have normal concentrations of PS, we speculated that the Padua hypercoagulation phenotype is due to decreased inhibition of FIXa R338L by PS. METHODS: We measured the ability of PS to inhibit FIX R338L, and we assessed the ability of PS to mitigate the prothrombotic effect FIX R338L. RESULTS: Plasma clotting assays demonstrated that 3-fold more PS was required to inhibit FIXa R338L compared with inhibition of wild type FIXa. Thrombin generation assays with Padua patient plasma recapitulated this biochemical consequence of the R338L mutation. Importantly, the less efficient inhibition of FIXa R338L was reversed by increasing PS concentration. Binding and co-immunoprecipitation studies revealed that the decrease in the inhibition of FIXa R338L by PS was caused by a 3- to 4-fold reduction in FIXa R338L affinity for PS. CONCLUSION: In summary, the resistance of FIXa R338L to inhibition by PS likely contributes to the unexpectedly high clotting rate in Padua individuals. Moreover, PS-mediated reversal of the pathological properties of FIXa R338L suggests that PS administration may be a novel and effective means to mitigate thrombophilia caused by any source of elevated FIXa activity.


Asunto(s)
Factor IX/genética , Factor IXa/genética , Proteína S/genética , Factor IXa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda