Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277158

RESUMEN

The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Fosfoproteínas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo
2.
J Cell Sci ; 137(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38264939

RESUMEN

Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.


Asunto(s)
Actinas , Aprendizaje Profundo , Animales , Actinas/metabolismo , Seudópodos/metabolismo , Mamíferos/metabolismo
3.
Dev Biol ; 505: 110-121, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37956923

RESUMEN

The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.


Asunto(s)
Drosophila melanogaster , Seudópodos , Animales , Seudópodos/metabolismo , Drosophila melanogaster/metabolismo , Miosinas , Drosophila/metabolismo , Transducción de Señal
4.
J Biol Chem ; 300(1): 105523, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043799

RESUMEN

Filopodia are slender cellular protrusions containing parallel actin bundles involved in environmental sensing and signaling, cell adhesion and migration, and growth cone guidance and extension. Myosin 10 (Myo10), an unconventional actin-based motor protein, was reported to induce filopodial initiation with its motor domain. However, the roles of the multifunctional tail domain of Myo10 in filopodial formation and elongation remain elusive. Herein, we generated several constructs of Myo10-full-length Myo10, Myo10 with a truncated tail (Myo10 HMM), and Myo10 containing four mutations to disrupt its coiled-coil domain (Myo10 CC mutant). We found that the truncation of the tail domain decreased filopodial formation and filopodial length, while four mutations in the coiled-coil domain disrupted the motion of Myo10 toward filopodial tips and the elongation of filopodia. Furthermore, we found that filopodia elongated through multiple elongation cycles, which was supported by the Myo10 tail. These findings suggest that Myo10 tail is crucial for promoting long filopodia.


Asunto(s)
Miosinas , Seudópodos , Actinas/metabolismo , Adhesión Celular , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Dominios Proteicos , Seudópodos/genética , Seudópodos/metabolismo , Células COS , Animales , Chlorocebus aethiops , Humanos
5.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042485

RESUMEN

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Asunto(s)
Actinas , Pérdida Auditiva , Miosina Tipo III , Animales , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Chlorocebus aethiops , Células COS , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Miosina Tipo III/genética , Miosina Tipo III/metabolismo , Miosinas/genética , Miosinas/metabolismo , Estereocilios , Humanos
6.
EMBO J ; 40(10): e105806, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33755220

RESUMEN

PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENß. Here, we report the identification of PTENε (also named as PTEN5), a novel N-terminal-extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5'UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Seudópodos/metabolismo , Animales , Western Blotting , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Fosfohidrolasa PTEN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Cell Sci ; 136(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37987375

RESUMEN

Actin-based protrusions are at the base of many fundamental cellular processes, such as cell adhesion, migration and intercellular communication. In recent decades, the discovery of new types of actin-based protrusions with unique functions has enriched our comprehension of cellular processes. However, as the repertoire of protrusions continues to expand, the rationale behind the classification of newly identified and previously known structures becomes unclear. Although current nomenclature allows good categorization of protrusions based on their functions, it struggles to distinguish them when it comes to structure, composition or formation mechanisms. In this Cell Science at a Glance article, we discuss the different types of actin-based protrusions, focusing on filopodia, cytonemes and tunneling nanotubes, to help better distinguish and categorize them based on their structural and functional differences and similarities.


Asunto(s)
Actinas , Nanotubos , Actinas/metabolismo , Nanotubos/química , Seudópodos/metabolismo , Comunicación Celular
8.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861887

RESUMEN

Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.


Asunto(s)
Integrinas , Seudópodos , Sitios de Unión , Espectrometría de Masas , Miosinas/genética
9.
J Pathol ; 263(1): 74-88, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411274

RESUMEN

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Microfilamentos , Sirtuinas , Humanos , Acetilación , Actinas/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Histona Acetiltransferasas/metabolismo , Metástasis Linfática , Sirtuinas/metabolismo
10.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705228

RESUMEN

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Movimiento Celular , Neoplasias Colorrectales , Citoesqueleto , Seudópodos , Factores de Transcripción SOXC , Proteína Neuronal del Síndrome de Wiskott-Aldrich , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Movimiento Celular/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Citoesqueleto/metabolismo , Seudópodos/metabolismo , Células CACO-2 , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Células HCT116 , Citoesqueleto de Actina/metabolismo
11.
Bioessays ; 45(5): e2200249, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916774

RESUMEN

Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections results in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.


Asunto(s)
Enfermedades Musculares , Células Satélite del Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Nicho de Células Madre , Transducción de Señal , Células Madre , Enfermedades Musculares/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Diferenciación Celular
12.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703992

RESUMEN

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

13.
EMBO J ; 39(21): e106003, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32946121

RESUMEN

Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.


Asunto(s)
Morfogénesis/genética , Morfogénesis/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Movimiento Celular , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , GTP Fosfohidrolasas , Edición Génica , Seudópodos/metabolismo , Seudópodos/patología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología
14.
Biol Chem ; 405(1): 31-41, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-37950644

RESUMEN

Growth cones of oligodendrocyte progenitor cells (OPCs) are challenging to investigate with conventional light microscopy due to their small size. Especially substructures such as filopodia, lamellipodia and their underlying cytoskeleton are difficult to resolve with diffraction limited microscopy. Light microscopy techniques, which surpass the diffraction limit such as stimulated emission depletion microscopy, often require expensive setups and specially trained personnel rendering them inaccessible to smaller research groups. Lately, the invention of expansion microscopy (ExM) has enabled super-resolution imaging with any light microscope without the need for additional equipment. Apart from the necessary resolution, investigating OPC growth cones comes with another challenge: Imaging the topography of membranes, especially label- and contact-free, is only possible with very few microscopy techniques one of them being scanning ion conductance microscopy (SICM). We here present a new imaging workflow combining SICM and ExM, which enables the visualization of OPC growth cone nanostructures. We correlated SICM recordings and ExM images of OPC growth cones captured with a conventional widefield microscope. This enabled the visualization of the growth cones' membrane topography as well as their underlying actin and tubulin cytoskeleton.


Asunto(s)
Microscopía , Células Precursoras de Oligodendrocitos , Microscopía/métodos , Conos de Crecimiento , Citoesqueleto , Microtúbulos
15.
Genes Cells ; 28(10): 709-726, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615261

RESUMEN

Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.

16.
Acta Pharmacol Sin ; 45(1): 193-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749237

RESUMEN

Metastasis of colorectal cancer (CRC) is a leading cause of mortality among CRC patients. Elevated COX-2 and PD-L1 expression in colon cancer tissue has been linked to distant metastasis of tumor cells. Although COX-2 inhibitors and immune checkpoint inhibitors demonstrate improved anti-tumor efficacy, their toxicity and variable therapeutic effects in individual patients raise concerns. To address this challenge, it is vital to identify traditional Chinese medicine components that modulate COX-2 and PD-1/PD-L1: rosmarinic acid (RA) exerts striking inhibitory effect on COX-2, while ginsenoside Rg1 (GR) possesses the potential to suppress the binding of PD-1/PD-L1. In this study we investigated whether the combination of RA and GR could exert anti-metastatic effects against CRC. MC38 tumor xenograft mouse model with lung metastasis was established. The mice were administered RA (100 mg·kg-1·d-1, i.g.) alone or in combination with GR (100 mg·kg-1·d-1, i.p.). We showed that RA (50, 100, 150 µM) or a COX-2 inhibitor Celecoxib (1, 3, 9 µM) concentration-dependently inhibited the migration and invasion of MC38 cells in vitro. We further demonstrated that RA and Celecoxib inhibited the metastasis of MC38 tumors in vitro and in vivo via interfering with the COX-2-MYO10 signaling axis and inhibiting the generation of filopodia. In the MC38 tumor xenograft mice, RA administration significantly decreased the number of metastatic foci in the lungs detected by Micro CT scanning; RA in combination with GR that had inhibitory effect on the binding of PD-1 and PD-L1 further suppressed the lung metastasis of colon cancer. Compared to COX-2 inhibitors and immune checkpoint inhibitors, RA and GR displayed better safety profiles without disrupting the tissue structures of the liver, stomach and colon, offering insights into the lower toxic effects of clinical traditional Chinese medicine against tumors while retaining its efficacy.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Ciclooxigenasa 2/metabolismo , Ácido Rosmarínico , Celecoxib/farmacología , Celecoxib/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico
17.
Cell Mol Life Sci ; 80(4): 82, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871239

RESUMEN

Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.


Asunto(s)
Potenciación a Largo Plazo , Péptido Hidrolasas , Humanos , Animales , Ratones , Anciano , Agrina , Espinas Dendríticas , Trastornos de la Memoria
18.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34873044

RESUMEN

Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.


Asunto(s)
Dendritas/fisiología , Actividad Motora/fisiología , Seudópodos/fisiología , Células Piramidales/fisiología , Sueño/fisiología , Animales , Proteínas Bacterianas , Calcio/metabolismo , Femenino , Proteínas Luminiscentes , Masculino , Ratones , Plasticidad Neuronal , Restricción Física
19.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099568

RESUMEN

Cadherins harness the actin cytoskeleton to build cohesive sheets of cells using paradoxically weak bonds, but the molecular mechanisms are poorly understood. In one popular model, actin organizes cadherins into large, micrometer-sized clusters known as puncta. Myosin is thought to pull on these puncta to generate strong adhesion. Here, however, we show that cadherin puncta are actually interdigitated actin microspikes generated by actin polymerization mediated by three factors (Arp2/3, EVL, and CRMP-1). The convoluted membranes in these regions give the impression of cadherin clustering by fluorescence microscopy, but the ratio of cadherin to membrane is constant. Nevertheless, these interlocking fingers of membrane are important for adhesion because perturbing their formation disrupts cell adhesion. In contrast, blocking myosin-dependent contractility does not disrupt either the interdigitated microspikes or lateral membrane adhesion. "Puncta" are zones of strong cell-cell adhesion not due to cadherin clustering but that occur because the interdigitated microspikes expand the surface area available for adhesive bond formation and increase the asperity of the cell surface to promote friction between cells.


Asunto(s)
Actinas/metabolismo , Cadherinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Animales , Adhesión Celular , Extensiones de la Superficie Celular/ultraestructura , Perros , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Células de Riñón Canino Madin Darby , Miosinas/metabolismo , Polimerizacion
20.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686599

RESUMEN

How signaling units spontaneously arise from a noisy cellular background is not well understood. Here, we show that stochastic membrane deformations can nucleate exploratory dendritic filopodia, dynamic actin-rich structures used by neurons to sample its surroundings for compatible transcellular contacts. A theoretical analysis demonstrates that corecruitment of positive and negative curvature-sensitive proteins to deformed membranes minimizes the free energy of the system, allowing the formation of long-lived curved membrane sections from stochastic membrane fluctuations. Quantitative experiments show that once recruited, curvature-sensitive proteins form a signaling circuit composed of interlinked positive and negative actin-regulatory feedback loops. As the positive but not the negative feedback loop can sense the dendrite diameter, this self-organizing circuit determines filopodia initiation frequency along tapering dendrites. Together, our findings identify a receptor-independent signaling circuit that employs random membrane deformations to simultaneously elicit and limit formation of exploratory filopodia to distal dendritic sites of developing neurons.


Asunto(s)
Dendritas/metabolismo , Neuronas/metabolismo , Seudópodos/metabolismo , Animales , Transducción de Señal , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda