Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Evol Dev ; 25(4-5): 257-273, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259250

RESUMEN

Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry-the relationship between skull shape and size during growth-can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Filogenia , Cráneo/anatomía & histología , Ballenas/anatomía & histología , Cabeza
2.
J Anat ; 243(3): 343-373, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37042479

RESUMEN

Cetaceans are atypical mammals whose tongues often depart from the typical (basal) mammalian condition in structure, mobility, and function. Their tongues are dynamic, innovative multipurpose tools that include the world's largest muscular structures. These changes reflect the evolutionary history of cetaceans' secondary adaptation to a fully aquatic environment. Cetacean tongues play no role in mastication and apparently a greatly reduced role in nursing (mainly channeling milk ingestion), two hallmarks of Mammalia. Cetacean tongues are not involved in drinking, breathing, vocalizing, and other non-feeding activities; they evidently play no or little role in taste reception. Although cetaceans do not masticate or otherwise process food, their tongues retain key roles in food ingestion, transport, securing/positioning, and swallowing, though by different means than most mammals. This is due to cetaceans' aquatic habitat, which in turn altered their anatomy (e.g., the intranarial larynx and consequent soft palate alteration). Odontocetes ingest prey via raptorial biting or tongue-generated suction. Odontocete tongues expel water and possibly uncover benthic prey via hydraulic jetting. Mysticete tongues play crucial roles driving ram, suction, or lunge ingestion for filter feeding. The uniquely flaccid rorqual tongue, not a constant volume hydrostat (as in all other mammalian tongues), invaginates into a balloon-like pouch to temporarily hold engulfed water. Mysticete tongues also create hydrodynamic flow regimes and hydraulic forces for baleen filtration, and possibly for cleaning baleen. Cetacean tongues lost or modified much of the mobility and function of generic mammal tongues, but took on noteworthy morphological changes by evolving to accomplish new tasks.


Asunto(s)
Cetáceos , Conducta Alimentaria , Animales , Masculino , Ovinos , Cetáceos/anatomía & histología , Lengua , Evolución Biológica , Agua
3.
J Exp Biol ; 225(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35389496

RESUMEN

Crustacean filter feeders capture oil droplets with the use of their ramified appendages. These appendages behave as paddles or sieves, based on the system's Reynolds number. Here, we used high-speed videography, scanning electron microscopy and fluid mechanics to study the capturing mechanisms of crude oil droplets and the filtering appendage's wettability by two species of barnacles (Balanus glandula and Balanus crenatus) and of the freshwater cladoceran Daphnia magna. Our results show that barnacle appendages behave as paddles and capture droplets in their boundary layers at low Reynolds number. At high Reynolds number, droplets are most likely to be captured via direct interception. There is an intermediate range of Reynolds number where droplets can be captured by both mechanisms at the same time. Daphnia magna captures droplets in the boundary layers of the third and fourth pair of thoracic legs with a metachronal motion of the appendages. All studied surfaces were revealed to be highly lipophobic, demonstrating captured oil droplets with high contact angles. We also discuss implications of such capture mechanisms and wettability on potential ingestion of crude oil by filter feeders. These results further our understanding of the capture of crude oil by filter feeders, shedding light on the main entry point of oil in marine food webs.


Asunto(s)
Contaminación por Petróleo , Petróleo , Thoracica , Animales , Daphnia , Cadena Alimentaria
4.
J Exp Biol ; 223(Pt 11)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32366692

RESUMEN

Whale sharks (Rhincodon typus) - the largest extant fish species - reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 h of whale shark behavior in Yucatán, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hours. Compared with normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made.


Asunto(s)
Tiburones , Natación , Animales , Especies en Peligro de Extinción , Masculino , México
5.
J Eukaryot Microbiol ; 67(2): 263-267, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31872522

RESUMEN

Choanoflagellates exist as both single-celled and colonial forms and filter-feed by generating water currents using a single apical flagellum. Hydrodynamic modeling studies have differed in predictions of whether single cells or colonies produce greater fluid flow to enhance feeding, and a recent study reported no increase in feeding efficiency of stalked colonies of choanoflagellates compared with single cells. We report that rosette colonies of Salpingoeca rosetta demonstrate higher rates of food vacuole formation compared with unicellular, slow swimmers.


Asunto(s)
Coanoflagelados/fisiología , Hidrodinámica , Natación , Vacuolas/fisiología
6.
Oecologia ; 194(3): 505-513, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079267

RESUMEN

Coexistence theory predicts that, in general, increases in the number of limiting resources shared among competitors should facilitate coexistence. Heterotrophic sessile marine invertebrate communities are extremely diverse but traditionally, space was viewed as the sole limiting resource. Recently planktonic food was recognized as an additional limiting resource, but the degree to which planktonic food acts as a single resource or is utilized differentially remains unclear. In other words, whether planktonic food represents a single resource niche or multiple resource niches has not been established. We estimated the rate at which 11 species of marine invertebrates consumed three phytoplankton species, each different in shape and size. Rates of consumption varied by a 240-fold difference among the species considered and, while there was overlap in the consumer diets, we found evidence for differential resource usage (i.e. consumption rates of phytoplankton differed among consumers). No consumer ingested all phytoplankton species at equivalent rates, instead most species tended to consume one of the species much more than others. Our results suggest that utilization of the phytoplankton niche by filter feeders is more subdivided than previously thought, and resource specialization may facilitate coexistence in this system. Our results provide a putative mechanism for why diversity affects community function and invasion in a classic system for studying competition.


Asunto(s)
Organismos Acuáticos , Fitoplancton , Animales , Dieta , Ecosistema , Invertebrados , Plancton
7.
Proc Natl Acad Sci U S A ; 114(35): 9373-9378, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808016

RESUMEN

Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis, and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.


Asunto(s)
Dinoflagelados/fisiología , Conducta Alimentaria , Hidrodinámica , Tamaño de la Partícula , Grabación en Video
8.
Am Nat ; 194(2): E30-E40, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31318280

RESUMEN

Most marine plankton have a high energy (carbon) density, but some are gelatinous with approximately 100 times more watery bodies. How do those distinctly different body plans emerge, and what are the trade-offs? We address this question by modeling the energy budget of planktonic filter feeders across life-forms, from micron-sized unicellular microbes such as choanoflagellates to centimeter-sized gelatinous tunicates such as salps. We find two equally successful strategies, one being small with high energy density (dense dwarf) and the other being large with low energy density (gelatinous giant). The constraint that forces large-but not small-filter feeders to be gelatinous is identified as a lower limit to the size-specific filter area, below which the energy costs lead to starvation. A further limit is found from the maximum size-specific motor force that restricts the access to optimum strategies. The quantified constraints are discussed in the context of other resource-acquisition strategies. We argue that interception feeding strategies can be accessed by large organisms only if they are gelatinous. On the other hand, organisms that use remote prey sensing do not need to be gelatinous, even if they are large.


Asunto(s)
Composición Corporal/fisiología , Conducta Alimentaria/fisiología , Zooplancton/fisiología , Animales , Tamaño Corporal , Metabolismo Energético , Modelos Teóricos , Conducta Predatoria
9.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562176

RESUMEN

The fecal indicator bacterial species Escherichia coli is an important measure of water quality and a leading cause of impaired surface waters. We investigated the impact of the filter-feeding metazooplankton Daphnia magna on the inactivation of E. coli The E. coli clearance rates of these daphnids were calculated from a series of batch experiments conducted under variable environmental conditions. Batch system experiments of 24 to 48 h in duration were completed to test the impacts of bacterial concentration, organism density, temperature, and water type. The maximum clearance rate for adult D. magna organisms was 2 ml h-1 organism-1 Less than 5% of E. coli removed from water by daphnids was recoverable from excretions. Sorption of E. coli on daphnid carapaces was not observed. As a comparison, the clearance rates of the freshwater rotifer Branchionus calyciflorus were also calculated for select conditions. The maximum clearance rate for B. calyciflorus was 6 × 10-4 ml h-1 organism-1 This research furthers our understanding of the impacts of metazooplankton predation on E. coli inactivation and the effects of environmental variables on filter feeding. Based on our results, metazooplankton can play an important role in the reduction of E. coli in natural treatment systems under environmentally relevant conditions.IMPORTANCEEscherichia coli is a fecal indicator bacterial species monitored by the U.S. Environmental Protection Agency to assess microbial water quality. Due to the potential human health implications linked to high levels of E. coli, it is important to understand the inactivation or reduction mechanisms in surface waters. Our research examines the capacities of two types of widespread filter-feeding freshwater metazooplankton, Daphnia magna and Brachionus calyciflorus, to reduce E. coli concentrations. We examine the impacts of different environmentally relevant conditions on the clearance rates. Our results contribute to a better understanding of the importance of metazooplankton in controlling E. coli concentrations and what conditions will reduce or increase grazing. These results provide baseline data to support future efforts to develop a quantitative model relating zooplankton uptake rates to relevant environmental variables.


Asunto(s)
Daphnia/fisiología , Escherichia coli/fisiología , Heces/microbiología , Rotíferos/fisiología , Calidad del Agua , Zooplancton/fisiología , Animales , Conducta Alimentaria
10.
J Anat ; 235(4): 725-748, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31216066

RESUMEN

Baleen whales (Mysticeti) have an extraordinary fossil record documenting the transition from toothed raptorial taxa to modern species that bear baleen plates, keratinous bristles employed in filter-feeding. Remnants of their toothed ancestry can be found in their ontogeny, as they still develop tooth germs in utero. Understanding the developmental transition from teeth to baleen and the associated skull modifications in prenatal specimens of extant species can enhance our understanding of the evolutionary history of this lineage by using ontogeny as a relative proxy of the evolutionary changes observed in the fossil record. Although at present very little information is available on prenatal development of baleen whales, especially regarding tooth resorption and baleen formation, due to a lack of specimens. Here I present the first detailed description of prenatal specimens of minke whales (Balaenoptera acutorostrata and Balaenoptera bonaerensis), focusing on the skull anatomy and tooth germ development, resorption, and baleen growth. The ontogenetic sequence described consists of 10 specimens of both minke whale species, from the earliest fetal stages to full term. The internal skull anatomy of the specimens was visualized using traditional and iodine-enhanced computed tomography scanning. These high-quality data allow detailed description of skull development both qualitatively and quantitatively using three-dimensional landmark analysis. I report distinctive external anatomical changes and the presence of a denser tissue medial to the tooth germs in specimens from the final portion of gestation, which can be interpreted as the first signs of baleen formation (baleen rudiments). Tooth germs are only completely resorbed just before the eruption of the baleen from the gums, and they are still present for a brief period with baleen rudiments. Skull shape development is characterized by progressive elongation of the rostrum relative to the braincase and by the relative anterior movement of the supraoccipital shield, contributing to a defining feature of cetaceans, telescoping. These data aid the interpretation of fossil morphologies, especially of those extinct taxa where there is no direct evidence of presence of baleen, even if caution is needed when comparing prenatal extant specimens with adult fossils. The ontogeny of other mysticete species needs to be analyzed before drawing definitive conclusions about the influence of development on the evolution of this group. Nonetheless, this work is the first step towards a deeper understanding of the most distinctive patterns in prenatal skull development of baleen whales, and of the anatomical changes that accompany the transition from tooth germs to baleen. It also presents comprehensive hypotheses to explain the influence of developmental processes on the evolution of skull morphology and feeding adaptations of mysticetes.


Asunto(s)
Evolución Biológica , Ballena Minke/embriología , Cráneo/embriología , Germen Dentario/embriología , Animales
11.
J Fish Biol ; 95(4): 992-998, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31187501

RESUMEN

We compiled historical reports of megamouth sharks Megachasma pelagios (mostly fishery by-catch and strandings) from 1976 to 2018 (n = 117) and found that they are distributed globally (highest latitude, 36°) with three hotspots: Japan, Taiwan and the Philippines. Despite possible biases due to variability in fishing effort, more individuals were reported at higher latitudes in the summer, suggesting seasonal, latitudinal migrations. Sex ratios were female-biased in Japan, but more even in Taiwan and the Philippines, suggesting some sexual segregation. Females (total length, LT = 3.41-7.10 m) were larger than males (LT = 1.77-5.39 m) and matured at a larger LT (5.17 m) than males (4.26 m). Also, we reviewed the systematics, feeding ecology and swimming behaviour of Megachasma pelagios based on the literature. Our review shows that, compared with their morphology, anatomy and genetics, behavioural ecology of this species remains largely unknown and electronic tagging studies are warranted.


Asunto(s)
Tamaño Corporal , Tiburones/anatomía & histología , Distribución Animal , Migración Animal , Animales , Estaciones del Año , Tiburones/genética , Tiburones/fisiología
12.
J Exp Biol ; 221(Pt 11)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895582

RESUMEN

The extant diversity and rich fossil record of cetaceans provides an extraordinary evolutionary context for investigating the relationship between form, function and ecology. The transition from terrestrial to marine ecosystems is associated with a complex suite of morphological and physiological adaptations that were required for a fully aquatic mammalian life history. Two specific functional innovations that characterize the two great clades of cetaceans, echolocation in toothed whales (Odontoceti) and filter feeding in baleen whales (Mysticeti), provide a powerful comparative framework for integrative studies. Both clades exhibit gigantism in multiple species, but we posit that large body size may have evolved for different reasons and in response to different ecosystem conditions. Although these foraging adaptations have been studied using a combination of experimental and tagging studies, the precise functional drivers and consequences of morphological change within and among these lineages remain less understood. Future studies that focus at the interface of physiology, ecology and paleontology will help elucidate how cetaceans became the largest predators in aquatic ecosystems worldwide.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Cetáceos/fisiología , Conducta Alimentaria , Animales , Ecosistema , Filogenia
13.
J Exp Biol ; 221(Pt 23)2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30337355

RESUMEN

Bowhead and right whale (balaenid) baleen filtering plates, longer in vertical dimension (≥3-4 m) than the closed mouth, presumably bend during gape closure. This has not been observed in live whales, even with scrutiny of video-recorded feeding sequences. To determine what happens to the baleen during gape closure, we conducted an integrative, multifactorial study including materials testing, functional (flow tank and kinematic) testing and histological examination. We measured baleen bending properties along the dorsoventral length of plates and anteroposterior location within a rack of plates via mechanical (axial bending, composite flexure, compression and tension) tests of hydrated and air-dried tissue samples from balaenid and other whale baleen. Balaenid baleen is remarkably strong yet pliable, with ductile fringes, and low stiffness and high elasticity when wet; it likely bends in the closed mouth when not used for filtration. Calculation of flexural modulus from stress/strain experiments shows that the balaenid baleen is slightly more flexible where it emerges from the gums and at its ventral terminus, but kinematic analysis indicates plates bend evenly along their whole length. Fin and humpback whale baleen has similar material properties but less flexibility, with no dorsoventral variation. The internal horn tubes have greater external and hollow luminal diameter but lower density in the lateral relative to medial baleen of bowhead and fin whales, suggesting a greater capacity for lateral bending. Baleen bending has major consequences not only for feeding morphology and energetics but also for conservation given that entanglement in fishing gear is a leading cause of whale mortality.


Asunto(s)
Boca/anatomía & histología , Ballenas/anatomía & histología , Animales , Fenómenos Biomecánicos , Queratinas , Boca/fisiología , Ballenas/fisiología
14.
J Exp Biol ; 221(Pt 19)2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30111555

RESUMEN

Invasive silver carp are thriving within eutrophic environments in the United States, in part because of their highly efficient filter-feeding mechanism. Silver carp utilize modified gill rakers to capture a specific range of food; however, their greatly modified filtering morphology allows them to feed on phytoplankton and zooplankton ranging in size from 4 to 85 µm. The filtering apparatus of silver carp comprises rigid filtering plates where the outer anatomy of these plates is characterized by long parallel channels that change in orientation along the length of the plate. Here, we investigate the underlying morphology and concomitant hydrodynamics that support the filtration mechanisms of silver and bighead carp. Bighead carp are also invasive filter feeders, but their filtering apparatus is morphologically distinct from that of silver carp. Using 3D particle image velocimetry, we determined how particles and fluid interact with the surface of the gill rakers/plates. Filtering plates in silver carp induce strong directed vortical flow, whereas the filtering apparatus of bighead carp resulted in a type of haphazard cross-flow filtration. The organized vortical flow established by silver carp likely increased the number of interactions that the particle-filled water had with the filtering membrane. This strong vortical organization is maintained only at 0.75 body lengths s-1, and vortical flow is poorly developed and maintained at slower and faster speeds. Moreover, we found that absolute vorticity magnitude in silver carp is an order of magnitude greater than in bighead carp.


Asunto(s)
Carpas/anatomía & histología , Carpas/fisiología , Conducta Alimentaria , Hidrodinámica , Animales , Modelos Biológicos , Boca/diagnóstico por imagen , Reología , Movimientos del Agua , Microtomografía por Rayos X/veterinaria
15.
J Anat ; 231(2): 212-220, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28542839

RESUMEN

Baleen is a comb-like structure that enables mysticete whales to bulk feed on vast quantities of small prey, and ultimately allowed them to become the largest animals on Earth. Because baleen rarely fossilises, extremely little is known about its evolution, structure and function outside the living families. Here we describe, for the first time, the exceptionally preserved baleen apparatus of an entirely extinct mysticete morphotype: the Late Miocene cetotheriid, Piscobalaena nana, from the Pisco Formation of Peru. The baleen plates of P. nana are closely spaced and built around relatively dense, fine tubules, as in the enigmatic pygmy right whale, Caperea marginata. Phosphatisation of the intertubular horn, but not the tubules themselves, suggests in vivo intertubular calcification. The size of the rack matches the distribution of nutrient foramina on the palate, and implies the presence of an unusually large subrostral gap. Overall, the baleen morphology of Piscobalaena likely reflects the interacting effects of size, function and phylogeny, and reveals a previously unknown degree of complexity in modern mysticete feeding evolution.


Asunto(s)
Ballenas/anatomía & histología , Animales , Fósiles
16.
J Exp Biol ; 220(Pt 15): 2717-2725, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28495869

RESUMEN

In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax, during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration.


Asunto(s)
Conducta Alimentaria , Peces/fisiología , Natación , Animales , Fenómenos Biomecánicos
17.
J Exp Biol ; 220(Pt 6): 995-1007, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28011822

RESUMEN

Sponges (Porifera) are abundant in most marine and freshwater ecosystems, and as suspension feeders they play a crucial role in filtering the water column. Their active pumping enables them to filter up to 900 times their body volume of water per hour, recycling nutrients and coupling a pelagic food supply with benthic communities. Despite the ecological importance of sponge filter feeding, little is known about how sponges control the water flow through their canal system or how much energy it costs to filter the water. Sponges have long been considered textbook examples of animals that use current-induced flow. We provide evidence that suggests that some species of demosponge do not use current-induced flow; rather, they respond behaviourally to increased ambient currents by reducing the volume of water filtered. Using a morphometric model of the canal system, we also show that filter feeding may be more energetically costly than previously thought. Measurements of volumetric flow rates and oxygen removal in five species of demosponge show that pumping rates are variable within and between species, with the more oxygen consumed the greater the volume filtered. Together, these data suggest that sponges have active control over the volume of water they process, which may be an adaptation to reduce the energetic cost of filtration in times of high stress.


Asunto(s)
Poríferos/fisiología , Poríferos/ultraestructura , Agua/metabolismo , Animales , Conducta Animal , Ecosistema , Metabolismo Energético , Filtración , Oxígeno/metabolismo , Consumo de Oxígeno , Poríferos/anatomía & histología
18.
J Exp Biol ; 220(Pt 23): 4535-4547, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038311

RESUMEN

Ram suspension-feeding fishes swim with an open mouth to force water through the oral cavity and extract prey items that are too small to be pursued individually. Recent research has indicated that, rather than using a dead-end mechanical sieve, American paddlefish (Polyodon spathula) employ vortical cross-step filtration. In this filtration mechanism, vortical flow that is generated posterior to the branchial arches organizes crossflow filtration processes into a spatial structure across the gill rakers. Despite the known impact of locomotor kinematics on fluid flow around the bodies of swimming fish, the effects of locomotor kinematics on filtration mechanisms in ram suspension feeders are unknown. Potential temporal organization of filtration mechanisms in ram suspension-feeding fish has not been studied previously. We investigated the effects of locomotor kinematics associated with undulatory swimming on intra-oral flow patterns and food particle transport. A mechanized model of the oral cavity was used to simulate the swimming kinematics of suspension-feeding paddlefish. We recorded fluctuations of flow speed and pressure within the model, which occurred at a frequency that corresponded with the frequency of the model's strides. Using the mechanized model in a flow tank seeded with Artemia cysts, we also showed that swimming kinematics aided the transport of this simulated food to the posterior margins of the gill slots, although the time scale of this transport is expected to vary with prey parameters such as size and concentration. Dye stream experiments revealed that, although stable vortical flow formed because of flow separation downstream of backward-facing steps in control trials, vortical flow structures in mechanized trials repeatedly formed and shed. These findings suggest strong integration between locomotor and feeding systems in ram suspension-feeding fishes.


Asunto(s)
Conducta Alimentaria , Peces/anatomía & histología , Peces/fisiología , Boca/fisiología , Natación , Animales , Fenómenos Biomecánicos , Filtración , Boca/anatomía & histología , Impresión Tridimensional
19.
Biol Lett ; 13(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28855416

RESUMEN

The origin of baleen whales (Mysticeti), the largest animals on Earth, is closely tied to their signature filter-feeding strategy. Unlike their modern relatives, archaic whales possessed a well-developed, heterodont adult dentition. How these teeth were used, and what role their function and subsequent loss played in the emergence of filter feeding, is an enduring mystery. In particular, it has been suggested that elaborate tooth crowns may have enabled stem mysticetes to filter with their postcanine teeth in a manner analogous to living crabeater and leopard seals, thereby facilitating the transition to baleen-assisted filtering. Here we show that the teeth of archaic mysticetes are as sharp as those of terrestrial carnivorans, raptorial pinnipeds and archaeocetes, and thus were capable of capturing and processing prey. By contrast, the postcanine teeth of leopard and crabeater seals are markedly blunter, and clearly unsuited to raptorial feeding. Our results suggest that mysticetes never passed through a tooth-based filtration phase, and that the use of teeth and baleen in early whales was not functionally connected. Continued selection for tooth sharpness in archaic mysticetes is best explained by a feeding strategy that included both biting and suction, similar to that of most living pinnipeds and, probably, early toothed whales (Odontoceti).


Asunto(s)
Diente , Animales , Evolución Biológica , Ballenas
20.
J Chem Ecol ; 43(4): 374-384, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28299588

RESUMEN

This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Carpas/crecimiento & desarrollo , Carpas/fisiología , Conducta Alimentaria , Olfato/fisiología , Animales , Bacterias , Señales (Psicología) , Alimentos , Especies Introducidas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda