RESUMEN
The mandarin fish (Siniperca chuatsi), as a typical freshwater carnivorous fish, has high economic value. Mandarin fish have a peculiar feeding habit of feeding on other live fry during the first-feeding period, while rejecting zooplankton or particulate feed, which may be attributed to the low expression of zooplankton-associated gene sws1 in mandarin fish. The domesticated strain of mandarin fish could feed on Artemia at 3 days post hatching (dph). However, the mechanism of mandarin fish larvae recognize and forage Artemia as food is still unclear. In this study, we employed transcriptional analysis to identify the representative differential pathways between mandarin fish larvae unfed and fed with Artemia at 3 dph. The comparative transcriptome analysis has unveiled a tapestry of genetic expression, highlighting 403 genes that have been up-regulated and 259 that have been down-regulated, all of which constitute the differentially expressed genes (DEGs). KEGG pathway analysis revealed that the number of differentially expressed genes in the photoconductive signaling pathway was the largest. Next, the Vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to assess whether sws1 induced ingestion of Artemia in mandarin fish larvae. We discovered that SAHA-treated larvae had more food intake of Artemia and up-regulated the transcription level of npy, which might have been associated with the up-regulated of sws1 opsin. Additionally, exposure to 0.5 µM SAHA increased the expression of genes involved in phototransduction pathway. These findings would provide insights on the molecular processes involved in mandarin fish larvae feeding on Artemia at the first-feeding stage.
Asunto(s)
Transcriptoma , Animales , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Fototransducción , Conducta Alimentaria , Perfilación de la Expresión Génica , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Artemia/genética , Perciformes/genética , Perciformes/metabolismo , Peces/genética , Peces/metabolismo , Peces/fisiologíaRESUMEN
Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.
Asunto(s)
Fundulidae , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Fundulidae/genética , Bifenilos Policlorados/toxicidad , Compuestos de Metilmercurio/toxicidad , Conducta Animal/efectos de los fármacos , Neurotoxinas/toxicidad , Fundulus heteroclitusRESUMEN
This study aimed to analyze the influence of different temperatures on the embryonic and larval development of discus fish Symphysodon aequifasciatus and determine the time required for the beginning of exogenous feeding. Eggs and larvae were obtained from natural spawns and distributed in five treatments: 24.0, 26.0, 28.0, 30.0, and 32.0 °C. To assess the developmental stages and embryonic structures, samples were taken at regular intervals and checked under an optical microscope. At the end of the experimental period, statistical analysis was performed, followed by Tukey's test. As a result, it was possible to observe the significant effects of temperature on the variables. It was noted that the temperature accelerated the embryonic and larval development of the discus and also contributed to a reduction in the time between the incubation period and the feeding transition. It was also noted that the incubation of eggs and larvae at a temperature of 24.0 °C can cause damage to embryos, such as malformation of the body as well as anomalies in the circulatory system.
Asunto(s)
Embrión no Mamífero , Desarrollo Embrionario , Larva , Temperatura , Animales , Embrión no Mamífero/fisiología , Femenino , Conducta Alimentaria , Factores de TiempoRESUMEN
Larval and transforming stages of smallscale weakfish Cynoscion microlepidotus (Sciaenidae) are described and illustrated based on samples obtained in three different sites along the Brazilian coast: São Marcos Bay (Maranhão state), Camamu Bay (Bahia state), and the Cananéia-Iguape Estuarine System (São Paulo state). Identification of early stages of C. microlepidotus was based on meristic counts, such as number of myomeres (22), number of fin spines and rays (dorsal XI, 24, anal II, 9 and pectoral 19), morphological features (presence of supraoccipital crest in larvae from flexion to transformation stages, branched anal fin spines) and pigmentation pattern. Early stages of this species are likely to be confused with Carangidae and Scorpaenidae due to the presence of a supraoccipital crest, and with the Sciaenidae species Stellifer rastrifer, Macrodon atricauda, M. ancylodon, and Isopistus parvipinnis due to branched anal fin elements. However, a distinction can be made when analyzing the set of characters (morphology, morphometry, pigmentation) in relation to the different stages of development.
RESUMEN
Temperature and nutrition are suggested as the primary factors affecting larval survival during the transition from endogenous to exogenous feeding in fish. However, little is known about its simultaneous impact during this period. In this study, Seriola rivoliana eggs were subjected to a constant 24 °C (CTE) and a daily temperature fluctuation (DTF) between 22.8 and 25.2 °C until oil droplet exhaustion (5.5 days after hatching). On the other hand, marine fish larvae mostly rely on live feed, with certain nutritional deficiencies such as poor long-chain fatty acids. Thus, rotifer Brachionus rotundiformis enrichment was simultaneously evaluated with temperature using three enrichment diets: Ori-green, S.presso, and a Domestic emulsion. For this purpose, the five experimental groups were established in triplicate using six 100-L tanks with three 10-L containers inside (18 experimental units in total). One hundred eggs were incubated, using a green water system, and 10 rotifers mL-1 were offered at mouth opening. After oil droplet exhaustion, survival was only affected by temperature (P < 0.01), being higher at DTF compared to CTE. At the same stage, Domestic emulsion resulted in bigger larvae than Ori-green. In a further assay at 3.7 DAH, the relative expression of the trypsin gene was higher at Domestic emulsion compared to S.presso and Ori-green. This study indicates that daily temperature fluctuation can improve larval performance and low levels of EPA and DHA in Domestic emulsion enriched rotifers were not critical for Seriola rivoliana at first feeding.
RESUMEN
Dynamic changes of tissues, organs and growth that occur in fish larvae during the transition to the juvenile stage are accompanied by differences in metabolic, locomotor and feeding activities that can reflect on fish's oxidative status. In this study, we examine how body growth, antioxidant system (superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and total antioxidant capacity (TAC) and oxidative damage (malondialdehyde-MDA) parameters change in larvae of yellowfin seabream larvae (Acanthopagrus latus) during early development (0, 7, 15, 22 and 30 day after hatching-DAH). Body growth (length and weight) starts to intensify from 15 DAH. We observed general increase in the antioxidant system (AOS) with the age of larvae from newly hatched and 7 DAH up to 15 and 22 DAH individuals. 15 and 22 DAH larvae had the greatest levels of TAC, SOD and GR activity, while 30 DAH larvae had higher CAT activity from 0, 7 and 15 DAH and MDA concentration in comparison to 15 DAH individuals. Several developmental events can be linked with observed results: lower AOS in 0 and 7 DAH individuals with low locomotor activity, growth, endo-exogenous feeding phase and cell differentiation; 15 and 22 DAH larvae are under pressure of fast growth, enhanced swimming and foraging capacity; while higher MDA production in 30 DAH larvae can be a result of shifts in muscle metabolism, changes in both quality and quantity of food and a significant increase in weight. The present study provides insight into the changes in redox status during the ontogeny of A. latus, fish species about which physiology is still little known but with a potential for use in marine culture. Ability to lower oxidative stress during critical developmental periods can enhance that potential.
Asunto(s)
Perciformes , Dorada , Animales , Dorada/metabolismo , Antioxidantes/metabolismo , Larva/metabolismo , Perciformes/fisiología , Oxidación-Reducción , Estrés Oxidativo , Superóxido Dismutasa/metabolismoRESUMEN
Microplastics (MPs) are emergent pollutants in freshwater environments and may impact aquatic organisms, including those of nutritional value. The specific activities of digestive and antioxidant enzymes can be used as good bioindicators of the potential effects of MPs on fish in case of waterborne MP contamination. In this study, we used fluorescent polystyrene microplastics (PS-MPs) to analyze the alterations in enzyme activities in larvae of Coregonus peled Gmelin (peled or Northern whitefish), one of the most valuable commercial fish species of Siberia. Our results indicate that peled larvae can ingest 2 µm PS microspheres in a waterborne exposure model. A positive correlation (rs = 0.956; p < 0.01) was found between MP concentration in water and the number of PS microspheres in fish guts, with no significant differences between 24 h and 6-day exposure groups. The ingestion of MPs caused alterations in digestive enzyme activity and antioxidant responses at the whole-body level. The presence of PS-MPs significantly stimulated (p < 0.05) the specific activity of α-Amylase and non-specific esterases in peled larvae after 24 h. However, a pronounced positive effect (p < 0.05) of MPs on the activity of pancreatic trypsine and bile salt-activated lipase was only found after 6 days of exposure compared to after 24 h. Intestinal membrane enzyme aminopeptidase N was also stimulated in the presence of PS-MPs after 6-day exposure. We also observed a significant increase in the specific activity of catalase in peled larvae after 6 days of exposure, which indicates the MP-induced modulation of oxidative stress. Taken together, these results highlight the potential impact of environmental MPs on northern commercial fish, their importance for estimating fish stocks, and the sustainability of freshwater ecosystems.
Asunto(s)
Salmonidae , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Larva/metabolismo , Antioxidantes/farmacología , Ecosistema , Poliestirenos/farmacología , Estrés Oxidativo , Contaminantes Químicos del Agua/análisisRESUMEN
Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.
Asunto(s)
Contaminantes Ambientales , Gadus morhua , Bifenilos Policlorados , Rotíferos , Contaminantes Químicos del Agua , Animales , Bifenilos Policlorados/toxicidad , Gadus morhua/metabolismo , Éteres Difenilos Halogenados/toxicidad , Plásticos/metabolismo , Larva/metabolismo , Microplásticos/toxicidad , Ecosistema , Contaminantes Ambientales/metabolismo , Contaminantes Químicos del Agua/metabolismoRESUMEN
The Amazon basin holds the world's largest freshwater fish diversity. Information on the intensity and timing of reproductive ecology of Amazonian fish is scant. We use a metabarcoding method by capture using a single probe to quantify species-level ichthyoplankton dynamics. We sampled the Marañón and the Ucayali rivers in Peru monthly for 2 years. We identified 97 species that spawned mainly during the flood start, the flood end or the receding periods, although some species had spawning activity in more than one period. This information was new for 40 of the species in the Amazon basin and 80 species in Peru. Most species ceased spawning for a month during a strong hydrological anomaly in January 2016, demonstrating the rapidity with which they react to environmental modifications during the breeding season. We also document another unreported event in the Amazon basin, the inverse phenology of species belonging to one genus (Triportheus). Overall larval flow in the Marañón was more than twice that of the Ucayali, including for most commercial species (between two and 20 times higher), whereas the Ucayali accounts for ~80% of the fisheries landings in the region. Our results are discussed in the light of the main anthropogenic threats to fishes, hydropower dam construction and the Hidrovía Amazónica, and should serve as a pre-impact baseline.
Asunto(s)
Peces , Ríos , Animales , Explotaciones Pesqueras , Larva , Estaciones del AñoRESUMEN
Urinary calculi are observed in some cultured marine fish larvae and may negatively impact larval health and survival. This study assessed urinary calculi in striped trumpeter Latris lineata larvae from hatching to 28 days post-hatching (dph). The prevalence of urinary calculi was variable over time and ranged from 15% to 50%, whereas the average size of calculi increased with larval age. Urinary calculi were semi-translucent, light cream to white colour with irregular morphology and a uniform internal structure. The calculi resulted in pressure atrophy causing a distended epithelium of the urinary bladder of fish with calculi. The calculi were predominantly formed of calcium hydrogen phosphate (CaHPO4 ). Routine assessment of the prevalence of urinary calculi in marine fish larvae is recommended, along with other parameters, to monitor larval quality and inform hatchery management actions.
Asunto(s)
Cálculos , Enfermedades de los Peces , Perciformes , Cálculos Urinarios , Animales , Peces , LarvaRESUMEN
Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood. We exposed larvae of an endemic Neotropical catfish (Rhamdia quelen) to a range of caffeine concentrations for 30 days. We found that larvae exposed to the highest concentration (16 mg L-1) showed skeletal deformations and reduced growth. We further compiled measured environmental concentrations of caffeine in surface freshwater globally and performed a risk assessment. Our analysis points to a low risk to R. quelen and equally sensitive fish species in ~90% of the freshwater ecosystems considered in our analysis. The risk quotient is higher in freshwater ecosystems of South and Central America, where R. quelen is endemic. Although the ecotoxicological risk is currently low in most places, increased caffeine consumption, exacerbated by the lack of sanitation, is expected to increase caffeine concentrations in many parts of the world, posing a threat of sublethal morphological effects to local fish species.
Asunto(s)
Bagres , Contaminantes Químicos del Agua , Animales , Cafeína/toxicidad , Ecosistema , Agua Dulce , Humanos , Contaminantes Químicos del Agua/toxicidadRESUMEN
Aquatic macrophyte taxonomic composition, species abundance and cover determine the physical structure, complexity and heterogeneity of aquatic habitats - the structuring role of macrophytes. These traits influence richness, distribution, feeding and strength of the relationships between food web communities in lakes. The aim of this study was to determine how lakes with different dominating macrophyte ecological groups affect planktonic food web components, emphasising the influence on young of year (YOY) fish and large (≥1 +) fish community. We hypothesised that different dominating macrophyte ecological groups have different structural effects on food web components and YOY fish growth, abundance and feeding. Studied lakes categorised into three different macrophyte ecological groups - lakes dominated by emergent, floating+floating-leaved or submerged vegetation. We found that all dominating ecological groups had a strong influence on plankton communities (except heterotrophic bacterioplankton and nanoflagellates), YOY fish and large fish. Floating-leaved plant dominance was positively related to planktonic food web structure and YOY fish weight, length, abundance and the consumption of zooplankton as a prey of all major species of YOY fishes. Larger fish tended to favour the presence of emergent vegetation. This conclusion has important implications for local managers and conservationists in respect to the maintenance and protection of littoral habitats and fish resources.
RESUMEN
The effects of climate warming on ecosystem dynamics are widespread throughout the world's oceans. In the Northeast Pacific, large-scale climate patterns such as the El Niño/Southern Oscillation and Pacific Decadal Oscillation, and recently unprecedented warm ocean conditions from 2014 to 2016, referred to as a marine heatwave (MHW), resulted in large-scale ecosystem changes. Larval fishes quickly respond to environmental variability and are sensitive indicators of ecosystem change. Categorizing ichthyoplankton dynamics across marine ecosystem in the Northeast Pacific can help elucidate the magnitude of assemblage shifts, and whether responses are synchronous or alternatively governed by local responses to regional oceanographic conditions. We analyzed time-series data of ichthyoplankton abundances from four ecoregions in the Northeast Pacific ranging from subarctic to subtropical: the Gulf of Alaska (1981-2017), British Columbia (2001-2017), Oregon (1998-2017), and the southern California Current (1981-2017). We assessed the impact of the recent (2014-2016) MHW and how ichthyoplankton assemblages responded to past major climate perturbations since 1981 in these ecosystems. Our results indicate that the MHW caused widespread changes in the ichthyoplankton fauna along the coast of the Northeast Pacific Ocean, but impacts differed between marine ecosystems. For example, abundances for most dominant taxa were at all-time lows since the beginning of sampling in the Gulf of Alaska and British Columbia, while in Oregon and the southern California Current species richness increased as did abundances of species associated with warmer waters. Lastly, species associated with cold waters also increased in abundances close to shore in southern California during the MHW, a pattern that was distinctly different from previous El Niño events. We also found several large-scale, synchronized ichthyoplankton assemblage composition shifts during past major climate events. Current climate projections suggest that MHWs will become more intense and thus our findings can help project future changes in larval dynamics, allowing for improved ecosystem management decisions.
Asunto(s)
Ecosistema , Alaska , Animales , Colombia Británica , Océanos y Mares , Oregon , Océano PacíficoRESUMEN
Critical swimming speed (Ucrit) is considered a good predictor of swimming capabilities in fish. To estimate Ucrit, a fish is exposed to an incrementally increasing laminar flow of water until it cannot maintain its position against the current. The spinning task assay has been proposed as an alternative method to traditional laminar flow methods; however, these methods have not been directly compared. Thus, the goal of this study was to determine whether the spinning task assay is a suitable alternative to traditional laminar flow assays. To that end, the performance of fathead minnows in each assay was compared at three time points (14, 19 and 24â days post-fertilization, dpf). In 14â dpf fish, Ucrit estimates were similar regardless of the assay used. However, at 19 and 24â dpf, Ucrit estimates derived from the two assay types were significantly different. This indicates that the assays are not equivalent to one another and that the spinning task assay is not a suitable alternative to the laminar flow assay for the determination of Ucrit.
Asunto(s)
Cyprinidae , Natación , Animales , LarvaRESUMEN
Accurate assessment of larval community composition in spawning areas is essential for fisheries management and conservation but is often hampered by the cryptic nature of many larvae, which renders them difficult to identify morphologically. Metabarcoding is a rapid and cost-effective method to monitor early life stages for management and environmental impact assessment purposes but its quantitative capability is under discussion. We compared metabarcoding with traditional morphological identification to evaluate taxonomic precision and reliability of abundance estimates, using 332 fish larvae from multinet hauls (0-50 m depth) collected at 14 offshore sampling sites in the Irish and Celtic seas. To improve quantification accuracy (relative abundance estimates), the amount of tissue for each specimen was standardized and mitochondrial primers (12S gene) with conserved binding sites were used. Relative family abundance estimated from metabarcoding reads and morphological assessment were positively correlated, as well as taxon richness (RS = 0.81, P = 0.007) and diversity (RS = 0.90, P = 0.002). Spatial patterns of community composition did not differ significantly between metabarcoding and morphological assessments. Our results show that DNA metabarcoding of bulk tissue samples can be used to monitor changes in fish larvae abundance and community composition. This represents a feasible, efficient, and faster alternative to morphological methods that can be applied to terrestrial and aquatic habitats.
Asunto(s)
Código de Barras del ADN Taxonómico , Peces , Animales , Biodiversidad , Peces/genética , Larva/genética , Océanos y Mares , Reproducibilidad de los ResultadosRESUMEN
Targeting in zebrafish fast growth, high survival rates and improved reproductive performance has led over the last years in variable feeding regimes between different facilities. Despite its significance on fish function and welfare, normal skeletal development has rarely been evaluated in establishing the best feeding practices for zebrafish. The aim of this study was to establish a protocol for normal skeletal development, growth and survival of zebrafish larvae through live feed-to-microdiet transition at an appropriate rate. Four feeding regimes including feeding exclusively on Artemia nauplii (A) or dry microdiet (D), and feeding on both Artemia and microdiet at two different transition rates (slow (B) or fast (C)) were applied from 5 to 24 dpf (days post-fertilization). Results demonstrated a significant effect of feeding regimes on the incidence of skeletal abnormalities (gill cover, fins and vertebral column, p < .05) in zebrafish larvae. The A and B experimental groups presented the highest (88 ± 3 and 84 ± 17%, respectively), but the C and D the lowest (18 ± 14 and 11 ± 2%, respectively), rates of normal fish (fish without any abnormality). Similarly, growth rate was comparatively elevated in A and B groups. No significant differences were observed in fish survival between A, B and C groups. However, D group presented a significantly lower survival rate. To our knowledge, this is the first study to show that the live feed-to-microdiet transition rate influences larval growth, survival and abnormality rates in a non-homogenous pattern.
Asunto(s)
Desarrollo Óseo , Dieta/veterinaria , Pez Cebra/crecimiento & desarrollo , Alimentación Animal , Animales , Artemia , Huesos/patología , Larva/crecimiento & desarrolloRESUMEN
The present research was conducted to provide insight into digestive larval capacity in Acanthopagrus latus larvae from hatching up to 30 days after hatching (DAH). Newly hatched larvae were stocked into six 300-L cylindrical polyethylene tanks at a density of larvae 50 larvae/L and reared by means of the green water system using Nannochloropsis oculata (0.5 × 106/mL). After mouth opening, larvae were fed with rotifers (5-16 individual/mL) from 2 to 20 DAH; then, Artemia nauplii (0.5-3.0 individuals/mL) were offered to larvae from 18 to 30 DAH, meanwhile a commercial microdiet was offered to larvae from 25 to 30 DAH. Larval performance in terms of growth and survival, and the assessment of the activity of selected digestive enzymes ontogeny of digestive enzymes activities was evaluated in larvae sampled at 0 (hatching), 7, 15, 22 and 30 DAH. Larvae showed an exponential growth characterized by two different growth stanzas, a first one characterized by slow growth rates comprised between hatching to 15 DAH (4.7 ± 0.2 mm), followed by a period of faster growth rates between 16 and 30 DAH (7.5 ± 0.6 mm). The activities of the brush border (alkaline phosphatase, ALP) and cytosolic (leucine-alanine peptidase, LAP) enzymes, as well as those of the pancreatic ones like total alkaline proteases, bile salt-activated lipase and α-amylase were detected from the mouth opening stage. Total activities of pancreatic and gastric enzymes increased with larval growth showing an enhancement of digestive capacities with larval age and size. The intestinal maturation in A. latus as assessed by the ratio of AP to LAP did not occur as expected by end of the first month of life suggesting the complete establishment of digestive luminal processes may take place at older ages. This study related to the growth patterns and ontogenic changes in activity of pancreatic, gastric and intestinal enzymes in A. latus and their nutritional regulation may be considered as the first step for improving the larviculture, as well as assessing and refining the nutritional requirements during the larval and early juvenile stages of this sparid species.
Asunto(s)
Proteínas de Peces/metabolismo , Dorada/crecimiento & desarrollo , Fosfatasa Alcalina/metabolismo , Animales , Carboxipeptidasas/metabolismo , Sistema Digestivo/enzimología , Larva , Lipasa/metabolismo , Dorada/metabolismo , alfa-Amilasas/metabolismoRESUMEN
Sulfate occurs naturally in the aquatic environment but its elevated levels can be toxic to aquatic life in freshwater environments. We investigated the toxicity of sulfate in humic, soft freshwater to whitefish (Coregonus lavaretus) from fertilization of eggs to hatching i.e. during the critical phases of whitefish early development. Anadromous Kokemäenjoki whiteï¬sh eggs and sperm during fertilization, embryos and larvae were exposed in the long-term 175-day incubation to seven different sodium sulfate (Na2SO4) concentrations from 44 to 2 000 mg SO4 L-1. Endpoint variables were the fertilization success, offspring survival and larval growth. Egg fertilization and early embryonic development were the most sensitive developmental stages of whitefish to sulfate, although the fertilization success and survival of embryos decreased only in the highest concentration of 2 000 mg SO4 L-1. The survival during late embryonic period, hatching and the 5-day larval period was high and no difference between the control and sulfate treatments were observed. LC50-values of sulfate for early embryonic period and for the entire embryonic and larval period was 1 413 and 1 161 mg L-1, respectively. The NOEC (No-observed Effect Concentration) of sulfate for the both periods was 1 207 mg L-1. The tolerance of whitefish early stages to sulfate toxicity seems to be on the same level as the tolerance of other salmonids' early stages.
Asunto(s)
Embrión no Mamífero/fisiología , Desarrollo Embrionario/efectos de los fármacos , Salmonidae/embriología , Sulfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Agua Dulce/química , Larva , Dosificación Letal Mediana , Masculino , Salmonidae/crecimiento & desarrollo , EspermatozoidesRESUMEN
The larval development of Pachypops fourcroi from the lower Amazon River was described through morphological, meristic and morphometric features. Sixty-five larvae were examined and present a moderate body, slightly elliptical eyes and head ranging from moderate to large. The mouth is initially terminal and becomes subterminal throughout development with three barbels in the mentonian region. The larvae of P. fourcroi can be differentiated from other Sciaenidae in the Amazon basin by the pigmentation pattern, the presence of barbels, head depth, body depth and diameter, and shape of the eye.
Asunto(s)
Perciformes , Animales , Larva , Pigmentación , RíosRESUMEN
Understanding aspects of the biology of early life stages of marine fish is critical if one hopes to reveal the factors and processes that impact the survival and recruitment (year class) strength. The Peruvian anchovy (Engraulis ringens) is a key species in the Humboldt current system, and the present study provides the first description of the embryonic and larval development of this species reared in captivity. Embryonic and early exogenous feeding stages of larvae were illustrated in detail at 18.5°C. Hatching was completed within 42 and 48 h post-fertilization at 18.5 and 14.5°C, respectively. Mean ± 95% C.I. standard length (LS ) at hatch (3.40 ± 0.10 mm at 18.5°C and 2.76 ± 0.34 mm at 14.5°C) was significantly different between the two temperatures. Larval behaviour was assessed at 18.5°C; at the onset of exogenous feeding [3 days post-hatch (dph)], larvae were fed small, motile dinoflagellates, Akashiwo sanguinea. At 7 dph, larvae started to feed almost exclusively on zooplankton (rotifers and Artemia nauplii). Larval activity increased with age, and the first sign of schooling was noted at 31 dph (18.56 mm LS ) at 18.5°C. Temperature had a significant effect on size-at-age, but not on body shape (depth to LS ratio). The size-at-age data for larvae (this study) was used to parameterize a temperature-corrected von Bertalanffy growth function for Peruvian anchovy, the accuracy of which was assessed for juveniles and adults (literature values).