Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2311241121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838020

RESUMEN

We present the experimental finding of multiple simultaneous two-fold degeneracies in the spectrum of a Kerr oscillator subjected to a squeezing drive. This squeezing drive resulting from a three-wave mixing process, in combination with the Kerr interaction, creates an effective static two-well potential in the phase space rotating at half the frequency of the sinusoidal drive generating the squeezing. Remarkably, these degeneracies can be turned on-and-off on demand, as well as their number by simply adjusting the frequency of the squeezing drive. We find that when the detuning Δ between the frequency of the oscillator and the second subharmonic of the drive equals an even multiple of the Kerr coefficient K, [Formula: see text], the oscillator displays [Formula: see text] exact, parity-protected, spectral degeneracies, insensitive to the drive amplitude. These degeneracies can be explained by the unusual destructive interference of tunnel paths in the classically forbidden region of the double well static effective potential that models our experiment. Exploiting this interference, we measure a peaked enhancement of the incoherent well-switching lifetime, thus creating a protected cat qubit in the ground state manifold of our oscillator. Our results illustrate the relationship between degeneracies and noise protection in a driven quantum system.

2.
J Phys Condens Matter ; 36(9)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983922

RESUMEN

Topological insulators (TIs) are a new class of materials that resemble ordinary band insulators in terms of a bulk band gap but exhibit protected metallic states on their boundaries. In this modern direction, higher-order TIs (HOTIs) are a new class of TIs in dimensionsd > 1. These HOTIs possess(d-1)-dimensional boundaries that, unlike those of conventional TIs, do not conduct via gapless states but are themselves TIs. Precisely, annth orderd-dimensional higher-order TI is characterized by the presence of boundary modes that reside on itsdc=(d-n)-dimensional boundary. For instance, a three-dimensional second (third) order TI hosts gapless (localized) modes on the hinges (corners), characterized bydc=1(0). Similarly, a second-order TI (SOTI) in two dimensions only has localized corner states (dc=0). These higher-order phases are protected by various crystalline as well as discrete symmetries. The non-equilibrium tunability of the topological phase has been a major academic challenge where periodic Floquet drive provides us golden opportunity to overcome that barrier. Here, we discuss different periodic driving protocols to generate Floquet HOTIs while starting from a non-topological or first-order topological phase. Furthermore, we emphasize that one can generate the dynamical anomalousπ-modes along with the concomitant 0-modes. The former can be realized only in a dynamical setup. We exemplify the Floquet higher-order topological modes in two and three dimensions in a systematic way. Especially, in two dimensions, we demonstrate a Floquet SOTI (FSOTI) hosting 0- andπcorner modes. Whereas a three-dimensional FSOTI and Floquet third-order TI manifest one- and zero-dimensional hinge and corner modes, respectively.

3.
J Phys Condens Matter ; 36(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38061070

RESUMEN

The action of any local operator on a quantum system propagates through the system carrying the information of the operator. This is usually studied via the out-of-time-order correlator (OTOC). We numerically study the information propagation from one end of a periodically driven spin-1/2XYchain with open boundary conditions using the Floquet infinite-temperature OTOC. We calculate the OTOC for two different spin operators,σxandσz. For sinusoidal driving, the model can be shown to host different types of edge states, namely, topological (Majorana) edge states and non-topological edge states. We observe a localization of information at the edge for bothσzandσxOTOCs whenever edge states are present. In addition, in the case of non-topological edge states, we see oscillations of the OTOC in time near the edge, the oscillation period being inversely proportional to the gap between the Floquet eigenvalues of the edge states. We provide an analytical understanding of these effects due to the edge states. It was known earlier that the OTOC for the spin operator which is local in terms of Jordan-Wigner fermions (σz) shows no signature of information scrambling inside the light cone of propagation, while the OTOC for the spin operator which is non-local in terms of Jordan-Wigner fermions (σx) shows signatures of scrambling. We report a remarkable 'unscrambling effect' in theσxOTOC after reflections from the ends of the system. Finally, we demonstrate that the information propagates into the system mainly via the bulk states with the maximum value of the group velocity, and we show how this velocity is controlled by the driving frequency and amplitude.

4.
J Phys Condens Matter ; 34(30)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35545082

RESUMEN

The high Chern number phases with the Chern number |C| > 1 are observed in this study of a periodically driven extended Su-Schrieffer-Heeger (E-SSH) model with a cyclic parameter. Besides the standard intra-dimer and the nearest-neighbor inter-dimer hopping of the SSH model, an additional next-nearest-neighbor hopping is considered in the E-SSH model. The cyclic parameter, which plays the role of a synthetic dimension, is invoked as a modulation of the hopping strengths. A rigorous analysis of different phase diagrams has shown multiple Floquet topological phase transitions among the high Chern number phases. These phase transitions can be controlled by the strength and frequency of the periodic driving. Instead of applying perturbation theory, the whole analysis is done by Floquet replica technique. This gives a freedom to study high as well as low-frequency effects on the system by considering less or more number of photon sectors. This system can be experimentally realized through a pulse sequence scheme in the optical lattice setup.

5.
J Phys Condens Matter ; 34(31)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580577

RESUMEN

We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.

6.
J Phys Condens Matter ; 33(49)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34547723

RESUMEN

It is demonstrated theoretically that the circularly polarized irradiation of two-dimensional electron systems can induce the localized electron states which antiferromagnetically interact with conduction electrons, resulting in the Kondo effect. Conditions of experimental observation of the effect are discussed for semiconductor quantum wells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda