Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Publication year range
1.
Plant J ; 114(4): 783-804, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861314

RESUMEN

A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Solanum lycopersicum/genética , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Flores
2.
J Exp Bot ; 72(15): 5478-5493, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34013313

RESUMEN

Arabidopsis flower primordia give rise to organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular mechanisms by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT- and AIL6-binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT and/or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include class B and C floral homeotic genes, growth regulatory genes, and genes involved in vascular development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Fenómenos Biológicos , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Factores de Transcripción/genética
3.
J Exp Bot ; 68(3): 483-498, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204535

RESUMEN

The floral meristem (FM) is self-maintaining at the early stages of flower development, but it is terminated when a fixed number of floral organs are produced. The FLORAL ORGAN NUMBER4 (FON4; also known as FON2) gene, an ortholog of Arabidopsis CLAVATA3 (CLV3), is required for regulating FM size and determinacy in rice. However, its interactions with floral homeotic genes remain unknown. Here, we report the genetic interactions between FON4 and floral homeotic genes OsMADS15 (an A-class gene), OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene), OsMADS3 and OsMADS58 (C-class genes), OsMADS13 (a D-class gene), and OsMADS1 (an E-class gene) during flower development. We observed an additive phenotype in the fon4 double mutant with the OsMADS15 mutant allele dep (degenerative palea). The effect on the organ number of whorl 2 was enhanced in fon4 spw1. Double mutant combinations of fon4 with osmads3, osmads58, osmads13, and osmads1 displayed enhanced defects in FM determinacy and identity, respectively, indicating that FON4 and these genes synergistically control FM activity. In addition, the expression patterns of all the genes besides OsMADS13 had no obvious change in the fon4 mutant. This work reveals how the meristem maintenance gene FON4 genetically interacts with C, D, and E floral homeotic genes in specifying FM activity in monocot rice.


Asunto(s)
Flores/crecimiento & desarrollo , Genes Homeobox , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Flores/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
4.
Ann Bot ; 117(5): 845-58, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27091506

RESUMEN

BACKGROUND: The flowers of core eudicots and monocots are generally determined by the number of floral organs they produce, and their developmental set-up tolerates little change from the bauplan once the floral primordium is initiated. Many species outside the core eudicots and monocots are more plastic in the number of floral organs they produce. For example, the Nymphaeales (water lilies), within the basal angiosperms, arrange their floral organs spirally and show smooth transitions between floral organs, and many Ranunculales (buttercups) produce variable numbers of stamens by adjusting the number of stamen whorls generated from a specialized ring meristem. However, the interactions of regulatory genes governing those processes are unknown. SCOPE AND CONCLUSIONS: This review provides an overview of the functional analyses of floral homeotic genes carried out in Ranunculales, summarizing knockdown and mutant phenotypes, and protein interactions to identify similarities and differences within the Ranunculales and in comparison with core eudicots. Floral gene regulatory networks in Ranunculales are identified showing intensive re-wiring amongst the floral homeotic genes to allow some degree of plasticity. The 'fading-border' model of floral organ identity evolution is extended by a hypothesis on how developmental plasticity can be achieved by interdependent regulation of floral homeotic genes. One aspect of floral plasticity may be achieved by regulation of the activity of a stamen-generating ring meristem and first ideas on its control are presented. While the amazing conservation of the major floral organ identity programme is being unravelled by analysing floral homeotic gene function and expression, we are only just beginning to understand the evolution of the gene network governing the organ identity genes, e.g. how plasticity can be achieved, and which aspects foster the robustness of the core eudicot floral bauplan.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Magnoliopsida/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Proteínas de Dominio MADS/genética , Magnoliopsida/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
5.
J Exp Bot ; 66(4): 1065-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25609826

RESUMEN

In spite of the different morphologies of sepals, petals, stamens, and carpels, all these floral organs are believed to be modified versions of a ground-state organ similar to the leaf. Modifications of the ground-state developmental programme are orchestrated by different combinations of MADS-domain transcription factors encoded by floral organ identity genes. In recent years, much has been revealed about the gene regulatory networks controlled by the floral organ identity genes and about the genetic pathways that control leaf development. This review examines how floral organ identity is connected with the control of morphogenesis and differentiation of shoot organs, focusing on the model species Arabidopsis thaliana. Direct links have emerged between floral organ identity genes and genes involved in abaxial-adaxial patterning, organ boundary formation, tissue growth, and cell differentiation. In parallel, predictive models have been developed to explain how the activity of regulatory genes can be coordinated by intercellular signalling and constrained by tissue mechanics. When combined, these advances provide a unique opportunity for revealing exactly how leaf-like organs have been 'metamorphosed' into floral organs during evolution and showing crucial regulatory points in the generation of plant form.


Asunto(s)
Arabidopsis/genética , Diferenciación Celular/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo
6.
New Phytol ; 201(3): 1065-1076, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24206427

RESUMEN

Medicago truncatula is one of the model species for legume studies. In an effort to develop legume genetics resources, > 21 700 Tnt1 retrotransposon insertion lines have been generated. To facilitate fast-growing needs in functional genomics, two reverse genetics approaches have been established: web-based database searching and PCR-based reverse screening. More than 840 genes have been reverse screened using the PCR-based approach over the past 6 yr to identify mutants in these genes. Overall, c. 84% (705 genes) success rate was achieved in identifying mutants with at least one Tnt1 insertion, of which c. 50% (358 genes) had three or more alleles. To demonstrate the utility of the two reverse genetics platforms, two mutant alleles were isolated for each of the two floral homeotic MADS-box genes, MtPISTILATA and MtAGAMOUS. Molecular and genetic analyses indicate that Tnt1 insertions in exons of both genes are responsible for the defects in floral organ development. In summary, we have developed two efficient reverse genetics platforms to facilitate functional characterization of M. truncatula genes.


Asunto(s)
Medicago truncatula/genética , Genética Inversa/métodos , ADN de Plantas/genética , Bases de Datos de Ácidos Nucleicos , Genes de Plantas/genética , Pruebas Genéticas , Mutagénesis Insercional/genética , Mutación/genética , Reacción en Cadena de la Polimerasa , Estándares de Referencia
7.
Protoplasma ; 253(2): 219-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25845756

RESUMEN

Tremendous progress has been achieved over the past 25 years or more of research on the molecular mechanisms of floral organ identity, patterning, and development. While collections of floral homeotic mutants of Antirrhinum majus laid the foundation already at the beginning of the previous century, it was the genetic analysis of these mutants in A. majus and Arabidopsis thaliana that led to the development of the ABC model of floral organ identity more than 20 years ago. This intuitive model kick-started research focused on the genetic mechanisms regulating flower development, using mainly A. thaliana as a model plant. In recent years, interactions among floral homeotic proteins have been elucidated, and their direct and indirect target genes are known to a large extent. Here, we provide an overview over the advances in understanding the molecular mechanism orchestrating A. thaliana flower development. We focus on floral homeotic protein complexes, their target genes, evidence for their transport in floral primordia, and how these new results advance our view on the processes downstream of floral organ identity, such as organ boundary formation or floral organ patterning.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Transporte de Proteínas
8.
Mol Plant ; 8(9): 1366-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25917758

RESUMEN

During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.


Asunto(s)
Epistasis Genética , Flores/crecimiento & desarrollo , Flores/genética , Genes Homeobox , Proteínas de Dominio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/metabolismo
9.
Front Plant Sci ; 3: 214, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049534

RESUMEN

In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKC(C) and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in sporophytes (MIKC(C)); and male gametophytes (MIKC*), but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKC(C), and 3 MIKC*). Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKC(C) genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKC(C) genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKC(C) genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular plants.

10.
Electron. j. biotechnol ; 29: 39-46, sept. 2017. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1017082

RESUMEN

Background: Idesia polycarpa Maxim. var. vestita Diels, a dioecious plant, is widely used for biodiesel due to the high oil content of its fruits. However, it is hard to distinguish its sex in the seedling stage, which makes breeding and production problematic as only the female tree can produce fruits, and the mechanisms underlying sex determination and differentiation remain unknown due to the lack of available genomic and transcriptomic information. To begin addressing this issue, we performed the transcriptome analysis of its female and male flower. Results: 28,668,977 and 22,227,992 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 84,213 unigenes with an average length of 1179 bp were generated and 65,972 unigenes (78.34%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG and GO databases. Functional annotation of the unigenes uncovered diverse biological functions and processes, including reproduction and developmental process, which may play roles in sex determination and differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed many unigenes annotated as metabolic pathways, biosynthesis of secondary metabolites pathways, plant­ pathogen interaction, and plant hormone signal transduction. Moreover, 29,953 simple sequence repeats were identified using the microsatellite software. Conclusion: This work provides the first detailed transcriptome analysis of female and male flower of I. polycarpa and lays foundations for future studies on the molecular mechanisms underlying flower bud development of I. polycarpa.


Asunto(s)
Reproducción/genética , Salicaceae/genética , Transcriptoma , Análisis de Secuencia de ARN , Genes de Plantas , Repeticiones de Microsatélite , Salicaceae/crecimiento & desarrollo , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda