Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
New Phytol ; 241(2): 926-936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899633

RESUMEN

Pollinators are important drivers of floral trait evolution, yet plant populations are not always perfectly adapted to their pollinators. Such apparent maladaptation may result from conflicting selection through male and female sexual functions in hermaphrodites. We studied sex-specific mating patterns and phenotypic selection on floral traits in Aconitum gymnandrum. After genotyping 1786 offspring, we partitioned individual fitness into sex-specific selfed and outcrossed components and estimated phenotypic selection acting through each. Relative fitness increased with increasing mate number, and more so for male function. This led to greater opportunity for selection through outcrossed male fitness, though patterns of phenotypic selection on floral traits tended to be similar, and with better support for selection through female rather than male fitness components. We detected directional selection through one or more fitness component for larger flower number, larger flowers, and more negative nectar gradients within inflorescences. Our results are consistent with Bateman's principles for sex-specific mating patterns and illustrate that, despite the expected difference in opportunity for selection, patterns of variation in selection across traits can be rather similar for the male and female sexual functions. These results shed new light on the effect of sexual selection on the evolution of floral traits.


Asunto(s)
Ranunculaceae , Reproducción , Flores/genética , Inflorescencia , Fenotipo , Polinización , Selección Genética
2.
New Phytol ; 242(2): 675-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403925

RESUMEN

Most plants form root hyphal relationships with mycorrhizal fungi, especially arbuscular mycorrhizal fungi (AMF). These associations are known to positively impact plant biomass and competitive ability. However, less is known about how mycorrhizas impact other ecological interactions, such as those mediated by pollinators. We performed a meta-regression of studies that manipulated AMF and measured traits related to pollination, including floral display size, rewards, visitation, and reproduction, extracting 63 studies with 423 effects. On average, the presence of mycorrhizas was associated with positive effects on floral traits. Specifically, we found impacts of AMF on floral display size, pollinator visitation and reproduction, and a positive but nonsignificant impact on rewards. Studies manipulating mycorrhizas with fungicide tended to report contrasting results, possibly because fungicide destroys both beneficial and pathogenic microbes. Our study highlights the potential for relationships with mycorrhizal fungi to play an important, yet underrecognized role in plant-pollinator interactions. With heightened awareness of the need for a more sustainable agricultural industry, mycorrhizal fungi may offer the opportunity to reduce reliance on inorganic fertilizers. At the same time, fungicides are now ubiquitous in agricultural systems. Our study demonstrates indirect ways in which plant-belowground fungal partnerships could manifest in plant-pollinator interactions.


Asunto(s)
Fungicidas Industriales , Micorrizas , Suelo , Plantas/microbiología , Polinización , Reproducción , Microbiología del Suelo , Hongos , Raíces de Plantas/microbiología
3.
Plant Cell Environ ; 47(3): 782-798, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37994626

RESUMEN

The relationship between plants and pollinators is known to be influenced by ecological interactions with other community members. While most research has focused on aboveground communities affecting plant-pollinator interactions, it is increasingly recognized that soil-dwelling organisms can directly or indirectly impact these interactions. Although studies have examined the effects of arbuscular mycorrhizal fungi on floral traits, there is a gap in research regarding similar effects associated with plant growth-promoting rhizobacteria (PGPR), particularly concerning floral scent. Our study aimed to investigate the influence of the PGPR Bacillus amyloliquefaciens on the floral traits of wild (Solanum habrochaites, Solanum pimpinellifolium and Solanum peruvianum) and cultivated tomato (Solanum lycopersicum), as well as the impact of microbially-driven changes in floral scent on the foraging behaviour of the stingless bee Melipona quadrifasciata. Our findings revealed that inoculating tomatoes with PGPR led to an increased number of flowers and enhanced overall floral volatile emission. Additionally, we observed higher flower biomass and pollen levels in all species, except S. peruvianum. Importantly, these changes in volatile emissions influenced the foraging behaviour of M. quadrifasciata significantly. Our results highlight the impact of beneficial soil microbes on plant-pollinator interactions, shedding light on the multiple effects that plant-microbial interactions can have on aboveground organisms.


Asunto(s)
Solanum lycopersicum , Solanum , Animales , Polinización , Flores , Plantas , Polen , Suelo
4.
Ann Bot ; 134(2): 311-324, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38712800

RESUMEN

BACKGROUND AND AIMS: The deceptive strategies by which orchids are pollinated and how these are capable of attracting pollinators remain understudied with regard to their implications for plant fitness. Despite their ecological importance, limited investigations have been conducted on sexual deception and shelter mimicry in orchid species, making this a compelling avenue in orchid biology research. To expand the knowledge of these reproductive mechanisms, we studied the pollination of Serapias lingua and S. parviflora in co-occurring and isolated sites in the Balearic Islands (Spain), further accentuated by the presence of a hybrid, indicating shared pollinators. METHODS: We employed bagging and hand pollination experiments to examine the reproductive biology of the two species. Furthermore, we evaluated the influence of phenotypical and ecological factors on reproductive success, including biometric measurements, reproductive performance and neighbourhood diversity (co-flowering and pollinator communities). KEY RESULTS: Reproductive mechanisms between these two orchid species exhibit substantial disparities. Serapias lingua relies primarily on insect-mediated pollination, while S. parviflora demonstrates self-reproduction capacity. Although events of open pollination are rare, hybridization occurs predominantly when S. lingua is the pollen donor. Fruit set in S. parviflora was positively correlated with plant height, while in S. lingua it was negatively associated with flower size. The coexistence of the two species positively affected pollinium removal in S. parviflora, but did not exert an influence on reproductive traits in S. lingua. Overall, biometric parameters were diminished in isolated compared with co-occurring sites. At the community level, the increased diversity of co-flowering species in the vicinity exhibited an inhibitory effect on pollinium removal in S. parviflora. CONCLUSIONS: Under a context of pollinator loss or phenological mismatch between pollinator presence and flowering, the selfing capacity of S. parviflora would guarantee reproduction whereas S. lingua survival would be compromised. Furthers studies are needed to assess the effects of phenotypical and ecological factors on reproductive success of S. lingua in pollinator-decline scenarios.


Asunto(s)
Flores , Orchidaceae , Polinización , Reproducción , Polinización/fisiología , Orchidaceae/fisiología , Reproducción/fisiología , Animales , Flores/fisiología , España , Insectos/fisiología , Frutas/fisiología , Ecosistema , Especificidad de la Especie , Polen/fisiología
5.
Ann Bot ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093025

RESUMEN

BACKGROUND: Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g., flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g., nectar rewards). SCOPE: In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-day greenhouse experiment. KEY RESULTS: We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS: In summary, we show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.

6.
Biol Lett ; 20(6): 20240082, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889773

RESUMEN

Floral longevity, the length of time a flower remains open and functional, is a phylogenetically conserved trait that balances floral costs against the rate at which flowers are pollinated. Floral symmetry has long been considered a key trait in floral evolution. Although zygomorphic (bilaterally symmetric) flowers typically receive fewer floral visitors than actinomorphic (radially symmetric) flowers, it is yet to be determined whether this could be associated with longer floral longevity. Using newly collected field data combined with data from the literature on 1452 species in 168 families, we assess whether floral longevity covaries with floral symmetry in a phylogenetic framework. We find that zygomorphic flowers last on average 1.1 days longer than actinomorphic flowers, a 26.5% increase in longevity, with considerable variation across both groups. Our results provide a basis to discuss the ecological and evolutionary costs of zygomorphy for plants. Despite these costs, zygomorphy has evolved numerous times throughout angiosperm history, and we discuss which rewards may outweigh the costs of slower pollination in zygomorphic flowers.


Asunto(s)
Evolución Biológica , Flores , Magnoliopsida , Filogenia , Polinización , Flores/anatomía & histología , Flores/fisiología , Magnoliopsida/fisiología , Magnoliopsida/anatomía & histología
7.
BMC Plant Biol ; 23(1): 425, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710175

RESUMEN

BACKGROUND: As the male and female gametophytes of flowering plants, pollen and ovules largely determine the upper and lower boundaries of plant reproductive success. It is commonly predicted that pollen and ovule number per flower should increase, and pollen-ovule ratio (P/O) per flower should decrease with increasing elevation in response to a more stochastic pollination environment. Here, we aimed to determine the response of pollen number, ovule number, and P/O to other floral traits and elevation gradients for 84 insect-pollinated herbaceous flowering plant species in five sub-alpine and alpine communities (2709 to 3896 m a.s.l.) on Yulong Snow Mountain, southwestern China. RESULTS: Six floral traits, including P/O, floral display area, flower number, tube depth, flower shape, and pollen presentation, were highly correlated with pollen and ovule number per flower. With increasing elevation, pollen number and P/O per flower increased marginally and significantly, respectively; ovule number per individual, flower number per individual, stigma stamen separation, and inflorescence height decreased significantly. However, ovule number per flower and other floral traits (i.e., floral display area, tube depth, stigma height, stamen height, and pollen and P/O per individual) did not change with elevation. We detected significant phylogenetic signals for pollen number, ovule number, and P/O, suggesting that these traits may be highly conserved and with limited response to changing environmental conditions. CONCLUSIONS: Results revealed patterns of plant reproductive character evolution along elevation gradients and the potential factors governing their spatial variation in high-elevation environments. Plant species at high elevations are more likely adapted to cross-pollination, indicated by increased P/O per flower at high elevations on Yulong Mountain. Combined effects of phylogenetic history and plant-pollinator interactions should determine plant trait evolution.


Asunto(s)
Magnoliopsida , Óvulo Vegetal , Filogenia , Polen , China , Flores , Magnoliopsida/genética
8.
Plant Cell Environ ; 46(3): 931-945, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36514238

RESUMEN

Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.


Asunto(s)
Suelo , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Polinización , Flores/anatomía & histología , Insectos , Herbivoria
9.
J Theor Biol ; 575: 111609, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37708988

RESUMEN

Floral food deception is a well-known phenomenon which is not thoroughly understood. Particularly, it is unclear what drives a plant towards Batesian mimicry or towards generalized food deception. We analysed the evolutionary game between a Model species with nectar-secreting flowers and a Deceiver species that provides no nectar who share pollinators for reproduction. We focused our analysis on the effect of similarity of floral signals between participating plants and on costs of nectar production. We defined payoffs in the game between Models and Deceivers as the stationary visitation frequencies to participating species with different signal similarities and nectar costs. Therefore, fitness payoff of each strategy was a product of complex interactions between plant species composing the community and the pollinators visiting them. Our model provides a unified framework in which consequences of Model species interaction with different deception modes can be compared. Our findings suggest that plant-pollinator systems, like other mutualistic systems, are prone to exploitation, and that exploitation may persist at a large range of conditions. We showed that floral similarity, and thus, pollinators' ability to discriminate between Model and deceptive species, governs the stability of Batesian mimicry, while pollinator switching and sampling behaviour enables the persistence of general food deception.


Asunto(s)
Mimetismo Biológico , Orchidaceae , Néctar de las Plantas , Polinización , Flores , Plantas
10.
Ann Bot ; 131(2): 275-286, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479901

RESUMEN

BACKGROUND AND AIMS: Trap flowers are fascinating cases of adaptation, often linked to oviposition-site mimicry systems. Some trap flowers do not imprison pollinators for a pre-determined period, but rather force them to move through a specific path, manipulating their movements in a way that culminates in pollen transfer, often as they leave through a secondary opening. METHODS: We investigated the previously unknown pollination system of the lady's slipper orchid Phragmipedium vittatum and assessed the function of micro-morphological traits of its trap flowers. KEY RESULTS: Our observations revealed that P. vittatum is pollinated by females of two hoverfly species (Syrphidae). Eggs laid by flies on or near raised black spots on the flowers indicate that the orchid mimics aphids which serve as food for their aphidophagous larvae. Dark, elevated aphid-like spots appear to attract the attention of hoverflies to a slipping zone. This region has downward projecting papillate cells and mucilage secretion that promote slipperiness, causing potential pollinators to fall into the labellum. They then follow a specific upward route towards inner aphid-like spots by holding onto upward oriented hairs that aid their grip. As hoverflies are funnelled by the lateral constriction of the labellum, they pass the stigma, depositing pollen they may be carrying. Later, they squeeze under one of the articulated anthers which places pollen smears onto their upper thorax. Then, they depart through one of the narrow lateral holes by holding onto hairs projecting from the petals. CONCLUSIONS: This study confirms the system of aphid mimicry in Phragmipedium and highlights the sophisticated micro-morphological traits used by trap flowers in pollinator attraction, trapping, guidance and release, thus promoting precise pollen transfer.


Asunto(s)
Áfidos , Animales , Femenino , Aclimatación , Brasil , Flores , Polen , Polinización
11.
Ann Bot ; 132(6): 1119-1130, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37616580

RESUMEN

BACKGROUND AND AIMS: Differences among populations in pollinator assemblages can lead to local adaptation mosaics in which plants evolve different floral morphologies and attractive traits. Mountain habitats may promote local adaptation because of differences in environmental conditions with altitude, causing changes in pollinators, and because mountaintops can act as isolated habitats. We studied if the differences in floral shape, size and nectar traits in Salvia stachydifolia can be attributed to variations in the relative contribution of hummingbirds and insects. METHODS: We studied eight populations of S. stachydifolia in natural and under common garden conditions, to assess whether population differences have a genetic component. We recorded pollinators, their behaviour and visitation rates, and characterized pollinator assemblages. In addition, we measured nectar volume and concentration, and collected flowers to describe floral shape and size variation using geometric morphometric methods. We then applied an unsupervised learning algorithm to identify ecotypes based on morphometric traits. Finally, we explored whether populations with different pollinator assemblages had different climatic and/or elevation preferences. KEY RESULTS: We found that variation in the identity of the main pollinators was associated with differences among populations in all traits, as expected under a local adaptation scenario. These differences persisted in the common garden, suggesting that they were not due to phenotypic plasticity. We found S. stachydifolia populations were pollinated either by bees, by hummingbirds or had mixed pollination. We identified two ecotypes that correspond to the identity of the main pollinator guilds, irrespective of climate or altitude. CONCLUSIONS: Variation in S. stachydifolia floral traits did not follow any evident association with bioclimatic factors, suggesting that populations may have diverged as the product of historical isolation on mountaintops. We suggest that differences among populations point to incipient speciation and an ongoing pollinator shift.


Asunto(s)
Néctar de las Plantas , Salvia , Abejas , Animales , Polinización , Flores , Insectos
12.
Am J Bot ; 110(5): e16170, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37070636

RESUMEN

PREMISE: Domestication of plant species results in phenotypic modifications and changes in biotic interactions. Most studies have compared antagonistic plant-herbivore interactions of domesticated plants and their wild relatives, but little attention has been given to how domestication influences plant-pollinator interactions. Floral attributes and interactions of floral visitors were compared between sister taxa of the genus Cucurbita (Cucurbitaceae), the domesticated C. moschata, C. argyrosperma ssp. argyrosperma and its wild progenitor C. argyrosperma ssp. sororia in the place of origin. METHODS: We conducted univariate and multivariate analyses to compare floral morphological traits and analyzed floral reward (nectar and pollen) quantity and quality between flowers of wild and domesticated Cucurbita taxa. Staminate and pistillate flowers of all three taxa were video recorded, and visitation and behavior of floral visitors were registered and analyzed. RESULTS: Most floral morphological characteristics of flowers of domesticated taxa were larger in both staminate and pistillate flowers. Staminate and pistillate flowers presented distinct correlations between floral traits and integration indices between domesticated and wild species. Additionally, pollen quantity and protein to lipid ratio were greater in domesticated species. Cucurbit pollen specialists, Eucera spp., had the highest probability of visit for all Cucurbita taxa. CONCLUSIONS: We provide evidence that floral traits of domesticated and wild Cucurbita species experienced different selection pressures. Domesticated Cucurbita species may have more resources invested towards floral traits, thereby increasing attractiveness to pollinators and potentially plant reproductive success. Wild ancestor plant populations should be conserved in their centers of origin to preserve plant-pollinator interactions.


Asunto(s)
Cucurbita , Abejas , Animales , Cucurbita/genética , Polinización , Domesticación , Plantas , Reproducción , Flores/anatomía & histología
13.
Am Nat ; 199(6): 824-840, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580216

RESUMEN

AbstractA current frontier of character displacement research is to determine whether displacement occurs via multiple phenotypic pathways and varies across communities with different species compositions. Here, we conducted the first test for context-dependent character displacement in multimodal floral signals by analyzing variation in floral scent in a system that exhibits character displacement in flower size and that has multiple types of sympatric communities. In a greenhouse common garden experiment, we measured quantitative variation in volatile emission rates of the progeny of two species of Clarkia from replicated parental communities that contain one, two, or four Clarkia species. The first two axes of a constrained correspondence analysis, which explained 24% of the total variation in floral scent, separated the species and community types. Of the 23 compounds that were significantly correlated with these axes, nine showed patterns consistent with character displacement. Two compounds produced primarily by C. unguiculata and two compounds produced primarily by C. cylindrica were emitted in higher amounts in sympatry. Character displacement in some volatiles varied across sympatric parental communities and occurred in parallel with displacement in flower size, demonstrating that this evolutionary process can be context dependent and may occur through multiple pathways.


Asunto(s)
Clarkia , Evolución Biológica , Flores , Polinización , Simpatría
14.
Planta ; 255(4): 78, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246754

RESUMEN

MAIN CONCLUSION: Using petrolatum gel as an antitranspirant on the flowers of California poppy and giant bindweed, we show that transpiration provides a large contribution to floral humidity generation. Floral humidity, an area of elevated humidity in the headspace of flowers, is believed to be produced predominantly through a combination of evaporation of liquid nectar and transpirational water loss from the flower. However, the role of transpiration in floral humidity generation has not been directly tested and is largely inferred by continued humidity production when nectar is removed from flowers. We test whether transpiration contributes to the floral humidity generation of two species previously identified to produce elevated floral humidity, Calystegia silvatica and Eschscholzia californica. Floral humidity production of flowers that underwent an antitranspirant treatment, petrolatum gel which blocks transpiration from treated tissues, is compared to flowers that did not receive such treatments. Gel treatments reduced floral humidity production to approximately a third of that produced by untreated flowers in C. silvatica, and half of that in E. californica. This confirms the previously untested inferences that transpiration has a large contribution to floral humidity generation and that this contribution may vary between species.


Asunto(s)
Flores , Néctar de las Plantas , Transporte Biológico , Humedad , Polinización
15.
New Phytol ; 236(4): 1572-1583, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36068995

RESUMEN

The evolution of hummingbird pollination is common across angiosperms throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. Here we examine independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and address common explanations for the prevalence of transitions from bee to hummingbird pollination. We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well-resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination correlate with elevation or climate. Traits predicting hummingbird pollination include small flower size, brightly colored floral bracts and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climate. Evolutionary shifts to hummingbird pollination in Costus are highly convergent and directional, involve a surprising set of traits when compared with other plants with analogous transitions and refute the generality of several common explanations for the prevalence of transitions from bee to hummingbird pollination.


Asunto(s)
Costus , Polinización , Abejas , Animales , Néctar de las Plantas , Aves , Flores/genética
16.
New Phytol ; 235(5): 2099-2110, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35596603

RESUMEN

The floral phenotype plays a main role in the attraction and fit of pollinators. Both perianth traits and the positioning of sex organs can be subjected to natural selection and determine nonrandom mating patterns in populations. In stylar-polymorphic species, the Darwinian hypothesis predicts increased mating success between individuals with sex organs at equivalent heights (i.e. with higher reciprocity). We used paternity analyses in experimental populations of a stylar-dimorphic species. By comparing the observed mating patterns with those expected under random mating, we tested the effects of sex organ reciprocity and perianth traits on mating success. We also analysed phenotypic selection on perianth traits through female and male functions. The (dis)similarity of parental perianth traits had no direct effects on the mating patterns. Sex organ reciprocity had a positive effect on mating success. Narrow floral tubes increased this effect in upper sex organs. Perianth traits showed little signs of phenotypic selection. Female and absolute fitness measures resulted in different patterns of phenotypic selection. We provide precise empirical evidence of the Darwinian hypothesis about the functioning of stylar polymorphisms, demonstrating that mating patterns are determined by sex organ reciprocity and only those perianth traits which are critical to pollinator fit.


Asunto(s)
Flores , Polinización , Evolución Biológica , Flores/genética , Reproducción/genética , Selección Genética
17.
Ann Bot ; 130(4): 561-577, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35732011

RESUMEN

BACKGROUND AND AIMS: Ornamental flowering plant species are often used in managed greenspaces to attract and support pollinator populations. In natural systems, selection by pollinators is hypothesized to result in convergent multimodal floral phenotypes that are more attractive to specific pollinator taxa. In contrast, ornamental cultivars are bred via artificial selection by humans, and exhibit diverse and distinct phenotypes. Despite their prevalence in managed habitats, the influence of cultivar phenotypic variation on plant attractiveness to pollinator taxa is not well resolved. METHODS: We used a combination of field and behavioural assays to evaluate how variation in floral visual, chemical and nutritional traits impacted overall attractiveness and visitation by pollinator taxonomic groups and bee species to 25 cultivars of five herbaceous perennial ornamental plant genera. KEY RESULTS: Despite significant phenotypic variation, cultivars tended to attract a broad range of pollinator species. Nonetheless, at the level of insect order (bee, fly, butterfly, beetle), attraction was generally modulated by traits consistent with the pollination syndrome hypothesis. At the level of bee species, the relative influence of traits on visitation varied across plant genera, with some floral phenotypes leading to a broadening of the visitor community, and others leading to exclusion of visitation by certain bee species. CONCLUSIONS: Our results demonstrate how pollinator choice is mediated by complex multimodal floral signals. Importantly, the traits that had the greatest and most consistent effect on regulating pollinator attraction were those that are commonly selected for in cultivar development. Though variation among cultivars in floral traits may limit the pollinator community by excluding certain species, it may also encourage interactions with generalist taxa to support pollinator diversity in managed landscapes.


Asunto(s)
Flores , Magnoliopsida , Animales , Abejas , Flores/fisiología , Humanos , Fenotipo , Plantas , Polinización/fisiología
18.
Am J Bot ; 109(2): 333-344, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34778956

RESUMEN

PREMISE: Widespread associations between selfing rate and floral size within and among taxa suggest that these traits may evolve in concert. Does this association develop immediately because of shared genetic and/or developmental control, or stepwise with selection shaping the evolution of one trait following the other? If the former, then association ought to appear within and across selfing populations. We explore this fundamental question in three populations of the mixed-mater Collinsia verna where autonomous selfing (AS) ability has been shown to be under selection by the pollination environment. METHODS: We grew clonal replicates of C. verna in a controlled environment to characterize broad-sense genetic correlations among traits within populations and to assess whether divergence in mating system and floral traits among these populations is consistent with their previously observed selection pressures. RESULTS: As predicted by their respective pollination environments, we demonstrate significant genetic divergence among populations in AS ability. However, patterns of divergence in floral traits (petal, stamen, and style size, stigmatic receptivity, and stigma-anther distance) were not as expected. Within populations, genetic variation in AS appeared largely independent from floral traits, except for a single weak negative association in one population between flower size and AS rate. CONCLUSIONS: Together, these results suggest that associations between selfing rate and floral traits across Collinsia species are not reflected at microevolutionary scales. If C. verna were to continue evolving toward the selfing syndrome, floral trait evolution would likely follow stepwise from mating system evolution.


Asunto(s)
Flores , Polinización , Flores/genética , Fenotipo , Reproducción
19.
Am J Bot ; 109(7): 1191-1202, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35588305

RESUMEN

PREMISE: Spatial and temporal resource allocations within inflorescences have been well-studied in many plants based on flowering sequence or floral position. However, there had been few attempts to investigate architectural effects and resource competition in species where the blooming pattern does not follow a linear positional pattern within the inflorescence. Moreover, most flowering plants show female-biased sex allocation in early or basal flowers, but it is unclear in species with inherent and changeless ovule production. METHODS: We investigated intra-inflorescence variation in reproductive traits of Salvia przewalskii, a perennial herb with 4-ouvle ovary flowers and flowering sequence-floral position decoupled inflorescences. To detect the effects of resource competition and architectural effects on reproductive success, we manipulated inflorescence (removed floral buds by position and flowering sequence) and pollination (opened and supplemented pollination). RESULTS: Pollen production and dry mass deceased from bottom to top flowers but did not significantly differ following flowering sequence, resulting in male-biased sex allocation in basal flowers. The seed production, fruit set, and bud development exhibited significant declining trends from proximal to distal positions regardless of the thinning and pollen treatments. Meanwhile, the seed production, fruit set, and bud development success did not significant differ when thinning was conducted according to flowering sequence. CONCLUSIONS: Architectural effects plays a crucial role in resource allocation within decoupled flowering inflorescences. Moreover, our results highlighted that inherent floral traits such as changeless ovule production, may modify architectural effects on sex allocation.


Asunto(s)
Inflorescencia , Polinización , Animales , Flores/fisiología , Inflorescencia/fisiología , Óvulo Vegetal/fisiología , Polinización/fisiología , Reproducción/fisiología
20.
Am J Bot ; 109(11): 1794-1810, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762273

RESUMEN

PREMISE: Floral scent is a complex trait that mediates many plant-insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. METHODS: We used a greenhouse common garden experiment to investigate variation in floral scent at three scales-within plants, among plants, and among populations-and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation in Oenothera cespitosa subsp. marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. RESULTS: Multiple analytical approaches demonstrated substantial variation among and within populations in compound-specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine-derived compounds, and hypanthium length are consistent with a long-tongued moth pollination syndrome. CONCLUSIONS: The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.


Asunto(s)
Manduca , Mariposas Nocturnas , Animales , Odorantes , Flores/anatomía & histología , Polinización , Feromonas , Plantas , Recompensa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda