Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674104

RESUMEN

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Pliegue de Proteína , Transporte de Proteínas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Humanos , Pliegue de Proteína/efectos de los fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155735

RESUMEN

Sarcoglycanopathies are rare limb girdle muscular dystrophies, still incurable, even though symptomatic treatments may slow down the disease progression. Most of the disease-causing defects are missense mutations leading to a folding defective protein, promptly removed by the cell's quality control, even if possibly functional. Recently, we repurposed small molecules screened for cystic fibrosis as potential therapeutics in sarcoglycanopathy. Indeed, cystic fibrosis transmembrane regulator (CFTR) correctors successfully recovered the defective sarcoglycan-complex in vitro. Our aim was to test the combined administration of some CFTR correctors with C17, the most effective on sarcoglycans identified so far, and evaluate the stability of the rescued sarcoglycan-complex. We treated differentiated myogenic cells from both sarcoglycanopathy and healthy donors, evaluating the global rescue and the sarcolemma localization of the mutated protein, by biotinylation assays and western blot analyses. We observed the additive/synergistic action of some compounds, gathering the first ideas on possible mechanism/s of action. Our data also suggest that a defective α-sarcoglycan is competent for assembly into the complex that, if helped in cell traffic, can successfully reach the sarcolemma. In conclusion, our results strengthen the idea that CFTR correctors, acting probably as proteostasis modulators, have the potential to progress as therapeutics for sarcoglycanopathies caused by missense mutations.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mutación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Sarcoglicanopatías/tratamiento farmacológico , Sarcoglicanos/metabolismo , Fibrosis Quística , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Células HEK293 , Humanos , Fibras Musculares Esqueléticas/metabolismo , Sarcoglicanopatías/genética , Sarcoglicanopatías/metabolismo , Sarcoglicanopatías/patología , Sarcoglicanos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda