Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
J Neurochem ; 168(6): 1113-1142, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38339785

RESUMEN

The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.


Asunto(s)
Clorhidrato de Fingolimod , Hipocampo , Lipidómica , Ratones Endogámicos C57BL , Animales , Clorhidrato de Fingolimod/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Masculino , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Inmunosupresores/farmacología
2.
Exp Brain Res ; 242(2): 321-336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059986

RESUMEN

Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.


Asunto(s)
Anhedonia , Enfermedad de Parkinson , Humanos , Ratas , Animales , Anhedonia/fisiología , Ratas Wistar , Tirosina 3-Monooxigenasa , Calidad de Vida , Enfermedad de Parkinson/patología , Oxidopamina , Antidepresivos , Sacarosa , Modelos Animales de Enfermedad
3.
Horm Behav ; 152: 105361, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163843

RESUMEN

Premenstrual dysphoric disorder (PMDD) is characterized by various physical and affective symptoms, including anxiety, irritability, anhedonia, social withdrawal, and depression. The present study investigated the role of the agmatinergic system in animal model of progesterone withdrawal in female rats. Chronic progesterone exposure of female rats for 21 days and its abrupt withdrawal showed enhanced marble burying, increased immobility time, and reduced no. of entries in open arm as compared to control animals. The progesterone withdrawal-induced enhanced marble burying anxiety and immobility time was significantly attenuated by agmatine (5-20 mg/kg, i.p.), and its endogenous modulators like L-arginine (100 mg/kg, i.p.), amino-guanidine (25 mg/kg, i.p.) and arcaine (50 mg/kg, i.p.) by their once-daily administration from day 14-day 21 of the protocol. We have also analysed the levels of agmatine, progesterone, and inflammatory cytokines in the hippocampal region of progesterone withdrawn rats. There was a significant decline in agmatine and progesterone levels and an elevation in cytokine levels in the hippocampal region of progesterone withdrawn rats compared to the control animals. In conclusion, the present studies suggest the importance of the endogenous agmatinergic system in progesterone withdrawal-induced anxiety-like and depression-like behaviour. The data also projects agmatine as a potential therapeutic target for the premenstrual dysphoric disorder.


Asunto(s)
Agmatina , Trastorno Disfórico Premenstrual , Humanos , Ratas , Femenino , Animales , Progesterona/farmacología , Agmatina/farmacología , Agmatina/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/psicología , Carbonato de Calcio
4.
Pharmacol Res ; 196: 106917, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690532

RESUMEN

As depression is projected to become the leading mental disease burden globally by 2030, understanding the underlying pathology, as well as screening potential anti-depressants with a higher efficacy, faster onset of action, and/or fewer side-effects is essential. A commonly used test for screening novel antidepressants and studying depression-linked aspects in rodents is the Porsolt Forced Swim Test. The present systematic mappping review gives a comprehensive overview of the evolution and of the most prevalently used set-ups of this test in rats, including the choice of animals (strain, sex, and age), technical aspects of protocol and environment, as well as reported outcome measures. Additionally, we provide an accessible list of all existing publications, to support informed decision-making for procedural and technical aspects of the test, to thereby enhance reproducibility and comparability. This should further contribute to reducing the number of unnecessarily replicated experiments, and consequently, reduce the number of animals used in future.

5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835237

RESUMEN

The pathophysiology of major depressive disorder (MDD) is diverse and multi-factorial, yet treatment strategies remain limited. While women are twice as likely to develop the disorder as men, many animal model studies of antidepressant response rely solely on male subjects. The endocannabinoid system has been linked to depression in clinical and pre-clinical studies. Cannabidiolic Acid-Methyl Ester (CBDA-ME, EPM-301) demonstrated anti-depressive-like effects in male rats. Here, we explored acute effects of CBDA-ME and some possible mediating mechanisms, using a depressive-like genetic animal model, the Wistar-Kyoto (WKY) rat. In Experiment 1, Female WKY rats underwent the Forced swim test (FST) following acute CBDA-ME oral ingestion (1/5/10 mg/kg). In Experiment 2, Male and female WKY rats underwent the FST after injection of CB1 (AM-251) and CB2 (AM-630) receptor antagonists 30 min before acute CBDA-ME ingestion (1 mg/kg, males; 5 mg/kg, females). Serum levels of Brain-Derived Neurotrophic Factor (BDNF), numerous endocannabinoids and hippocampal Fatty Acid Amide Hydrolase (FAAH) levels were assessed. Results indicate that females required higher doses of CBDA-ME (5 and 10 mg/kg) to induce an anti-depressive-like effect in the FST. AM-630 blocked the antidepressant-like effect in females, but not in males. The effect of CBDA-ME in females was accompanied by elevated serum BDNF and some endocannabinoids and low hippocampal expression of FAAH. This study shows a sexually diverse behavioral anti-depressive response to CBDA-ME and possible underlying mechanisms in females, supporting its potential use for treating MDD and related disorders.


Asunto(s)
Cannabidiol , Trastorno Depresivo Mayor , Receptor Cannabinoide CB2 , Animales , Femenino , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo , Cannabidiol/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Modelos Animales de Enfermedad , Endocannabinoides , Ratas Endogámicas WKY , Receptor Cannabinoide CB2/antagonistas & inhibidores
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047687

RESUMEN

Major depression is one of the most common psychiatric disorders worldwide, usually associated with anxiety. The multi-etiological nature of depression has increased the search for new antidepressant molecules, including irisin, for which, in a previous study, we tested its effect in young mice when administered intraperitoneally in a long-term intermittent manner. Here, we evaluated the effect of subcutaneous short-term irisin administration (100 µg/Kg/day/5 days) in male and female mice subjected to behavioral paradigms: Tail Suspension Test (TST), Forced Swim Test (FST), Elevated Plus Maze (EPM), and Y Maze (YM). Moreover, a qRT-PCR assay was performed to analyze the impact of irisin treatment on Pgc-1α/FNDC5 expression in the brain. A significant reduction in immobility time in TST and FST was observed in irisin-treated mice. Furthermore, irisin treatment significantly increased the number of entries and time spent in open arms, demonstrating its anxiolytic effect. Memory-enhancing effects were not reported in YM. Interestingly, no gender differences were observed in all behavioral tests. Overall, these results suggest that short-term subcutaneous irisin administration can exert an antidepressant and anxiolytic role, probably due to the activation of the Pgc-1α/FNDC5 system in the brain. Further investigation could lead to the identification of irisin as a new agent for the treatment of psychiatric disorders.


Asunto(s)
Ansiolíticos , Depresión , Ratones , Masculino , Femenino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fibronectinas/metabolismo , Ansiedad/tratamiento farmacológico , Antidepresivos/farmacología , Ansiolíticos/farmacología , Conducta Animal
7.
Molecules ; 28(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838975

RESUMEN

Epilepsy and major depressive disorder are the two of the most common central nervous system (CNS) diseases. Clinicians and patients call for new antidepressants, antiseizure medicines, and in particular drugs for depression and epilepsy comorbidities. In this work, a dozen new triazole-quinolinones were designed, synthesized, and investigated as CNS active agents. All compounds reduced the immobility time significantly during the forced swim test (FST) in mice at the dosage of 50 mg/kg. Compounds 3f-3j gave superior performance over fluoxetine in the FST with more reductions of the immobility time. Compound 3g also reduced immobility time significantly in a tail suspension test (TST) at the dosage of 50 mg/kg, though its anti-immobility activity was inferior to that of fluoxetine. An open field test was carried out and it eliminated the false-positive possibility of 3g in the FST and TST, which complementarily supported the antidepressant activity of 3g. We also found that almost all compounds except 3k exhibited antiseizure activity in the maximal electroshock seizure (MES) model at 100 or 300 mg/kg. Compounds 3c, 3f, and 3g displayed the ED50 of 63.4, 78.9, and 84.9 mg/kg, and TD50 of 264.1, 253.5, and 439.9 mg/kg, respectively. ELISA assays proved that the mechanism for the antiseizure and antidepressant activities of compound 3g was via affecting the concentration of GABA in mice brain. The molecular docking study showed a good interaction between 3g and the amino acid residue of the GABAA receptor. Excellent drug-like properties and pharmacokinetic properties of compound 3a-l were also predicted by Discovery Studio. These findings provided a new skeleton to develop agents for the treatment of epilepsy and depression comorbidities.


Asunto(s)
Trastorno Depresivo Mayor , Quinolonas , Ratones , Animales , Fluoxetina/farmacología , Simulación del Acoplamiento Molecular , Trastorno Depresivo Mayor/tratamiento farmacológico , Quinolonas/uso terapéutico , Triazoles/uso terapéutico , Antidepresivos/farmacología , Natación , Depresión/tratamiento farmacológico , Suspensión Trasera
8.
Acta Neuropsychiatr ; 35(1): 35-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36101010

RESUMEN

The Wistar Hannover rat (WHR) is a strain commonly used for toxicity studies but rarely used in studies investigating depression neurobiology. In this study, we aimed to characterise the behavioural responses of WHR to acute and repeated antidepressant treatments upon exposure to the forced swim test (FST) or learned helplessness (LH) test. WHR were subjected to forced swimming pre-test and test with antidepressant administration (imipramine, fluoxetine, or escitalopram) at 0, 5 h and 23 h after pre-test. WHR displayed high immobility in the test compared to unstressed controls (no pre-swim) and failed to respond to the antidepressants tested. The effect of acute and repeated treatment (imipramine, fluoxetine, escitalopram or s-ketamine) was then tested in animals not previously exposed to pre-test. Only imipramine (20 mg/kg, 7 days) and s-ketamine (acute) reduced the immobility time in the test. To further investigate the possibility that the WHR were less responsive to selective serotonin reuptake inhibitors, the effect of repeated treatment with fluoxetine (20 mg/kg, 7 days) was investigated in the LH model. The results demonstrated that fluoxetine failed to reduce the number of escape failures in two different protocols. These data suggest that the WHR do not respond to the conventional antidepressant treatment in the FST or the LH. Only s-ketamine and repeated imipramine were effective in WHR in a modified FST protocol. Altogether, these results indicate that WHR may be an interesting tool to investigate the mechanisms associated with the resistance to antidepressant drugs and identify more effective treatments.


Asunto(s)
Fluoxetina , Imipramina , Ratas , Animales , Fluoxetina/farmacología , Ratas Wistar , Imipramina/farmacología , Imipramina/uso terapéutico , Depresión/tratamiento farmacológico , Escitalopram , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Conducta Animal , Modelos Animales
9.
Eur J Neurosci ; 55(9-10): 2813-2831, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548153

RESUMEN

The acquired immobility response during the "forced swim test (FST)" is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression-like behaviour, but the relative contribution per country is changing. When the Editors-in-Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression-like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-053.html) which encourages investigators to use animal models "for" addressing neurobiological questions rather than as model "of" specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom-up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top-down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri-aquaductal grey. It is expected that combining neural top-down and endocrine bottom-up approaches will provide new insights in the role of stress-coping and adaptation in pathogenesis of mental disorders.


Asunto(s)
Depresión , Estrés Psicológico , Adaptación Psicológica , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Humanos , Estrés Psicológico/metabolismo , Natación
10.
Cogn Affect Behav Neurosci ; 22(4): 818-832, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35199313

RESUMEN

Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.


Asunto(s)
Ambiente , Aislamiento Social , Animales , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Wistar , Memoria Espacial
11.
J Neurosci Res ; 100(2): 490-505, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850450

RESUMEN

Following mild traumatic brain injury (TBI), high school and collegiate-aged females tend to report more emotional symptoms than males. Adolescent male and female rats (35 days old) were subjected to mild TBI and evaluated for anxiety- and depression-like behaviors using the elevated plus maze and forced swim test (FST), respectively, and cellular alterations. Injured brains did not exhibit an overt lesion, atrophy of tissue or astrocytic reactivity underneath the impact site at 6-week post-injury, suggestive of the mild nature of trauma. Neither male nor female brain-injured rats exhibited anxiety-like behavior at 2 or 6 weeks, regardless of estrous phase at the time of behavior testing. Brain-injured male rats did not exhibit any alterations in immobility, swimming and climbing times in the FST compared to sham-injured rats at either 2- or 6-week post-injury. Brain-injured female rats did, however, exhibit an increase in immobility (in the absence of changes in swimming and climbing times) in the FST at 6 weeks post-injury only during the estrus phase of the estrous cycle, suggestive of a depression-like phenotype. Combined administration of the estrogen receptor antagonist, tamoxifen, and the progesterone receptor antagonist, mifepristone, during proestrus was able to prevent the depression-like phenotype observed during estrus. Taken together, these data suggest that female rats may be more vulnerable to exhibiting behavioral deficits following mild TBI and that estrous phase may play a role in depression-like behavior.


Asunto(s)
Conmoción Encefálica , Depresión , Animales , Ansiedad/psicología , Conducta Animal , Conmoción Encefálica/complicaciones , Depresión/etiología , Depresión/psicología , Estro , Femenino , Masculino , Ratas , Natación/psicología
12.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886944

RESUMEN

Depression is a psychiatric disorder increasingly diffused worldwide. Evidence suggests that irisin, a myokine secreted by contracting muscle, mediates beneficial effects on several targets, including the brain. Here, the potential antidepressant properties of long-term intermittent systemic irisin administration (100 µg/kg/weekly for 1 month) were evaluated in mice by the Tail Suspension Test (TST), Forced Swim Test (FST), and Open Field Test (OFT). Furthermore, to deepen the molecular pathways underlying irisin treatment, the expression of irisin precursor, neurotrophic/growth factors, and cytokines was analyzed. Irisin treatment significantly decreased the immobility time in the TST and FST, suggesting an antidepressant effect. Additionally, irisin seemed to display an anxiolytic-like effect increasing the time spent in the OFT arena center. These findings were probably due to the modulation of endogenous brain factors as the gene expression of some neurotrophins, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1), was upregulated only in irisin-treated mouse brain. Moreover, irisin modulated the expression of some cytokines (IL-1ß, IL-4, IL-6, and IL-10). To the best of our knowledge, this is the first study demonstrating that the irisin antidepressant effect may be observed even with a systemic administration in mice. This could pave the way toward intriguing preclinical research in humans.


Asunto(s)
Antidepresivos , Depresión , Fibronectinas , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/farmacología , Fibronectinas/uso terapéutico , Suspensión Trasera , Ratones , Natación
13.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743159

RESUMEN

Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light-dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.


Asunto(s)
Ketamina , Animales , Antidepresivos/farmacología , Conducta Animal , Encéfalo/metabolismo , ADN/farmacología , Ketamina/farmacología , Neurotransmisores/farmacología , Psilocibina/farmacología , Ratas , Receptores de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo
14.
Molecules ; 27(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208969

RESUMEN

Imperatorin, a naturally derived furanocoumarin, exerts promising neuropharmacological properties. Therefore, it might be applicable in the treatment of brain diseases such as depression. In the present project, we aimed to investigate the sex-dependent effects of imperatorin (1, 5, and 10 mg/kg) on behavior and neurochemistry associated with antidepressant effects. The depressive-like behaviors of male and female Swiss mice were investigated in a forced swim test (FST). Subsequently, High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin, its metabolite, 5-HIAA, and noradrenaline, in mouse brains. The study revealed that only males responded to imperatorin (1 and 5 mg/kg) treatment and caused an antidepressant effect, such as with respect to depressive-like behaviors, lowering immobility time and increasing immobility latency. The HPLC analysis demonstrated that serotonin levels in the prefrontal cortex of females decreased with the middle dose of imperatorin (5 mg/kg), while in the male prefrontal cortex, the lower dose (1 mg/kg) boosted serotonin levels. There were no evident changes observed with respect to noradrenaline and serotonin metabolite levels in the male hippocampus. To conclude, we propose that imperatorin has antidepressant potential, seemingly only in males, influencing brain serotonin level, but the direct mechanism of action requires further investigation.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresión , Furocumarinas/farmacología , Corteza Prefrontal , Caracteres Sexuales , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Furocumarinas/farmacocinética , Masculino , Ratones , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología
15.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458676

RESUMEN

(1) Background: Recent data indicate that receptors for GLP-1 peptide are involved in the activity of the mesolimbic system. Thus, the purpose of the present study was to examine the effect of the selective dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on morphine dependence in mice. (2) Methods: Morphine dependence in mice was obtained by administration of increasing doses of morphine for eight consecutive days, twice a day. On the 9th day of the experiment, the naloxone-induced (2 mg/kg, ip) morphine withdrawal signs (jumping) were assessed. Moreover, behavioral effects of short-term (60 h after morphine discontinuation) and long-term (14 days after morphine discontinuation) morphine withdrawal were observed. In terms of behavioral effects, the depressive effect in the forced swim test and anxiety in the elevated plus maze test were investigated. Locomotor activity of mice was also studied. (3) Results: The administration of linagliptin (10 and 20 mg/kg, ip) for 8 consecutive days before morphine injections significantly diminished the number of naloxone-induced morphine withdrawal signs (jumping) in mice. In addition, the cessation of morphine administration induced depressive behavior in mice which were observed during short- and long-term morphine withdrawal. Linagliptin administered during morphine withdrawal significantly reduced the depressive behavior in studied mice. Furthermore, the short-term morphine withdrawal evoked anxiety which also was reduced by linagliptin in mice. (4) Conclusions: The present study reveals that GLP-1 receptors are involved in morphine dependence. What is more, linagliptin might be a valuable drug in attenuating the physical symptoms of morphine dependence. It might be also a useful drug in reducing emotional disturbances which may develop during the morphine withdrawal period.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Dependencia de Morfina , Síndrome de Abstinencia a Sustancias , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Péptido 1 Similar al Glucagón , Hipoglucemiantes/farmacología , Linagliptina/farmacología , Ratones , Morfina/efectos adversos , Dependencia de Morfina/tratamiento farmacológico , Naloxona/farmacología , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
16.
Pharm Biol ; 60(1): 1656-1668, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36052952

RESUMEN

CONTEXT: Michelia champaca L. (Magnoliaceae) has been known since ancient times for its rich medicinal properties. OBJECTIVE: The ethanol extract of Michelia champaca leaves (EEMC) was evaluated on depression and anxiety using in vivo and in silico studies. MATERIALS AND METHODS: Swiss albino mice were divided into control, standard, 100 and 200 mg/kg b.w. EEMC groups and for drug administration using oral gavage. The antidepressant activity was evaluated using forced swim test (FST) and tail suspension test (TST) whereas the anxiolytic activity through elevated plus maze and light and dark tests. The in silico studies included molecular docking against human potassium channel KCSA-FAB and human serotonin transporter, and ADME/T analysis. RESULTS: Open arm duration and entries were comparable between 200 mg/kg b.w. group (184.45 ± 1.00 s and 6.25 ± 1.11, respectively) and that of diazepam treated group (180.02 s ± 0.40 and 6.10 ± 0.05, respectively). Time spent in the light cubicle was higher (46.86 ± 0.03%), similar to that of diazepam (44.33 ± 0.64%), suggesting its potent anxiolytic activity. A delayed onset of immobility and lowered immobility time was seen at both the treatment doses (FST: 93.7 ± 1.70 and 89.1 ± 0.40 s; TST: 35.05 ± 2.75 and 38.50 ± 4.10 s) and the standard drug imipramine (FST: 72.7 ± 3.72 and TST: 30.01 ± 2.99 s), indicative of its antidepressant ability. In silico studies predicted doripenem to induce anxiolytic and antidepressant activity by inhibiting human potassium channel KCSA-FAB and human serotonin transporter proteins, respectively. CONCLUSIONS: EEMC is a rich source of bioactive compounds with strong antidepressant and anxiolytic properties.


Asunto(s)
Ansiolíticos , Magnoliaceae , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Diazepam , Humanos , Ratones , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Canales de Potasio , Proteínas de Transporte de Serotonina en la Membrana Plasmática
17.
Saudi Pharm J ; 30(11): 1589-1602, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465849

RESUMEN

Purpose: The aim of this study was to design fast dissolving tablets (FDT) of the anti -psychiatric drug haloperidol in solid dispersion forms as a way to enhance its dissolution profile and anti-psychiatric effect. Methods: Solubility studies of haloperidol in various polymers solutions were investigated. The selected polymer with high drug solubility (Poly ethylene glycol 4000) was used for preparation of solid dispersion through two methods solvent evaporation method and melting method. Haloperidol solid dispersion mixed with other solid powder excipients and compressed into tablets. The resulted tablets were evaluated according to British Pharmacopoeia (B.P.) specifications. Pre- and post -compression studies were performed to determine the flow properties and evaluate the solid dispersion systems, followed by in vivo studies through forced swimming test (FST). Results: Pre-compression studies showed adequate flowability and compatibility of polymer and solid excipients with haloperidol. The selected solid dispersion tablet (SD2) demonstrated the best disintegration and water absorption ratio in addition to satisfactory friability and hardness. Attempts of in vitro dissolution results and thermodynamic stability studies showed acceptable results for (SD2) formulation containing PEG 4000 polymer prepared by melting method.The in vivo study of (SD2) formulation revealed the highest immobility time to rats compared to control rats and others treated with commercial haloperidol product. Conclusion: Fast dissolving tablets prepared from solid dispersion of haloperidol with PEG4000 expressed rapid onset of action with enhanced anti-psychiatric effect of haloperidol.

18.
Stress ; 24(2): 196-205, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33726625

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuromodulatory peptide strongly implicated in nervous stress processing. Human polymorphism of the primary PACAP receptor (PAC1) is linked to psychiatric disorders, including posttraumatic stress disorder (PTSD). Prefrontal cortex PACAP signaling is associated with processing of traumatic stress and fear learning, suggesting a potential role in PTSD-related deficits. We used RNAscope to define the cellular location of PACAP and PAC1 in the infralimbic cortex (IL). Subsequent experiments used a pharmacological approach to assess the impact of IL PACAP infusion on behavioral and physiological stress response and fear memory. Adult male Sprague-Dawley rats were bilaterally microinjected with PACAP (1 ug) or vehicle into the IL, 30 minutes prior to forced swim test (FST). Blood was sampled at 15, 30, 60, and 120 minutes for analysis of hypothalamic pituitary adrenal (HPA) axis reactivity. Five days after, animals were tested in a 3-day passive avoidance paradigm with subsequent testing of fear retention two weeks later. We observed that PACAP is highly expressed in putative pyramidal neurons (identified by VGlut1 expression), while PAC1 is enriched in interneurons (identified by GAD). Pretreatment with PACAP increased active coping style in the FST, despite higher levels of ACTH and corticosterone. The treatment was also sufficient to cause an increase in anxiety-like behavior in a dark/light crossover test and enhanced retention of passive avoidance. Our data suggest that IL PACAP plays a role in driving stress responses and in processing of fear memories, likely mediated by inhibition of cortical drive.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Estrés Psicológico , Animales , Masculino , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Horm Behav ; 136: 105060, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34537487

RESUMEN

The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During late adolescence, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Rats then aged to 15 months when the FST and GTT were repeated. In young rats, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate increased female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.


Asunto(s)
Corticosterona , Caracteres Sexuales , Adaptación Psicológica , Animales , Conducta Animal/fisiología , Corticosterona/metabolismo , Femenino , Glucosa/farmacología , Longevidad , Masculino , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/metabolismo
20.
Nutr Neurosci ; 24(1): 35-44, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31368414

RESUMEN

Objectives: Depression is a common neuropsychiatric disorder. The available pharmacotherapy is ineffective for a substantial proportion of patients and has numerous side effects. Therefore, finding safer drugs for the management of depression is of paramount importance. The present study was aimed to identify the compound responsible for anti-depressant like effects of Allium cepa outer scale extract (ACE) and to elucidate its mechanism of action. Methods:The anti-depressant compound from ACE was separated using bioactivity guided fractionation. Furthermore, mouse model of unpredictable chronic mild stress (UCMS) induced depressive behaviour was employed to investigate the anti-depressant like activity and potential mechanism of bioactive compound using behavioural tests (forced swim test (FST), sucrose preference test (SPT), open field test (OFT)) as well as by assessing brain oxidative stress, monoamine oxidase A and serotonin levels. Results:ACE and its ethylacetate fraction (EF) showed marked anti-depressant like effects in mice in the FST model. Chromatographic and spectroscopic studies of EF lead to the isolation of quercetin and quercetin 4'-O-glucoside (QG). Of these, QG (20 mg/kg) treated animals showed activity similar to that shown by fluoxetine in mice using FST. Thus, QG was tested for anti-depressant like activity against UCMS induced depressive behaviour in mice. Treatment of UCMS- exposed mice with QG (20 mg/kg) improved UCMS induced behaviour anomalies and restored brain biochemical parameters (oxidative stress, MAO-A activity and serotonin levels). Discussion:QG is responsible for anti-depressant like effects of ACE possibly via prevention of brain oxidative stress and restoring serotonin levels by inhibiting MAO-A activity.


Asunto(s)
Antidepresivos/administración & dosificación , Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresión/metabolismo , Glucósidos/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Quercetina/administración & dosificación , Animales , Depresión/prevención & control , Femenino , Masculino , Ratones , Cebollas , Extractos Vegetales/administración & dosificación , Extractos Vegetales/metabolismo , Quercetina/análogos & derivados , Estrés Psicológico/complicaciones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda