Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 15.710
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(10): 2208-2218.e15, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098345

RESUMEN

Semliki Forest virus (SFV) is an alphavirus that uses the very-low-density lipoprotein receptor (VLDLR) as a receptor during infection of its vertebrate hosts and insect vectors. Herein, we used cryoelectron microscopy to study the structure of SFV in complex with VLDLR. We found that VLDLR binds multiple E1-DIII sites of SFV through its membrane-distal LDLR class A (LA) repeats. Among the LA repeats of the VLDLR, LA3 has the best binding affinity to SFV. The high-resolution structure shows that LA3 binds SFV E1-DIII through a small surface area of 378 Å2, with the main interactions at the interface involving salt bridges. Compared with the binding of single LA3s, consecutive LA repeats around LA3 promote synergistic binding to SFV, during which the LAs undergo a rotation, allowing simultaneous key interactions at multiple E1-DIII sites on the virion and enabling the binding of VLDLRs from divergent host species to SFV.


Asunto(s)
Receptores de LDL , Virus de los Bosques Semliki , Alphavirus/metabolismo , Microscopía por Crioelectrón , Virus de los Bosques Semliki/metabolismo , Virus de los Bosques Semliki/ultraestructura , Receptores de LDL/metabolismo , Receptores de LDL/ultraestructura , Receptores Virales/metabolismo , Receptores Virales/ultraestructura
2.
Proc Natl Acad Sci U S A ; 121(22): e2316924121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768350

RESUMEN

Dynamic ecosystems, such as the Amazon forest, are expected to show critical slowing down behavior, or slower recovery from recurrent small perturbations, as they approach an ecological threshold to a different ecosystem state. Drought occurrences are becoming more prevalent across the Amazon, with known negative effects on forest health and functioning, but their actual role in the critical slowing down patterns still remains elusive. In this study, we evaluate the effect of trends in extreme drought occurrences on temporal autocorrelation (TAC) patterns of satellite-derived indices of vegetation activity, an indicator of slowing down, between 2001 and 2019. Differentiating between extreme drought frequency, intensity, and duration, we investigate their respective effects on the slowing down response. Our results indicate that the intensity of extreme droughts is a more important driver of slowing down than their duration, although their impacts vary across the different Amazon regions. In addition, areas with more variable precipitation are already less ecologically stable and need fewer droughts to induce slowing down. We present findings indicating that most of the Amazon region does not show an increasing trend in TAC. However, the predicted increase in extreme drought intensity and frequency could potentially transition significant portions of this ecosystem into a state with altered functionality.


Asunto(s)
Sequías , Bosques , Ecosistema , Brasil , Árboles/fisiología , Árboles/crecimiento & desarrollo , Cambio Climático
3.
Proc Natl Acad Sci U S A ; 121(4): e2317054121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227671

RESUMEN

Kelp forests are highly productive and economically important ecosystems worldwide, especially in the North Pacific Ocean. However, current hypotheses for their evolutionary origins are reliant on a scant fossil record. Here, we report fossil hapteral kelp holdfasts from western Washington State, USA, indicating that kelp has existed in the northeastern Pacific Ocean since the earliest Oligocene. This is consistent with the proposed North Pacific origin of kelp associated with global cooling around the Eocene-Oligocene transition. These fossils also support the hypotheses that a hapteral holdfast, rather than a discoid holdfast, is the ancestral state in complex kelps and suggest that early kelps likely had a flexible rather than a stiff stipe. Early kelps were possibly grazed upon by mammals like desmostylians, but fossil evidence of the complex ecological interactions known from extant kelp forests is lacking. The fossil record further indicates that the present-day, multi-story kelp forest had developed at latest after the mid-Miocene climate optimum. In summary, the fossils signify a stepwise evolution of the kelp ecosystem in the North Pacific, likely enabled by changes in the ocean-climate system.


Asunto(s)
Ecosistema , Kelp , Animales , Bosques , Clima , Océano Pacífico , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(1): e2311280120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147645

RESUMEN

The dominant paradigm is that large tracts of Southeast Asia's lowland rainforests were replaced with a "savanna corridor" during the cooler, more seasonal climates of the Last Glacial Maximum (LGM) (23,000 to 19,000 y ago). This interpretation has implications for understanding the resilience of Asia's tropical forests to projected climate change, implying a vulnerability to "savannization". A savanna corridor is also an important foundation for archaeological interpretations of how humans moved through and settled insular Southeast Asia and Australia. Yet an up-to-date, multiproxy, and empirical examination of the palaeoecological evidence for this corridor is lacking. We conducted qualitative and statistical analyses of 59 palaeoecological records across Southeast Asia to test the evidence for LGM savannization and clarify the relationships between methods, biogeography, and ecological change in the region from the start of Late Glacial Period (119,000 y ago) to the present. The pollen records typically show montane forest persistence during the LGM, while δ13C biomarker proxies indicate the expansion of C4-rich grasslands. We reconcile this discrepancy by hypothesizing the expansion of montane forest in the uplands and replacement of rainforest with seasonally dry tropical forest in the lowlands. We also find that smooth forest transitions between 34,000 and 2,000 y ago point to the capacity of Southeast Asia's ecosystems both to resist and recover from climate stressors, suggesting resilience to savannization. Finally, the timing of ecological change observed in our combined datasets indicates an 'early' onset of the LGM in Southeast Asia from ~30,000 y ago.


Asunto(s)
Ecosistema , Bosques , Humanos , Bosque Lluvioso , Cambio Climático , Asia Sudoriental
5.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621138

RESUMEN

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Asunto(s)
Arecaceae , Aceites Industriales , Ecosistema , Bosques , Biodiversidad , Agricultura , Árboles , Aceite de Palma , Conservación de los Recursos Naturales
6.
Proc Natl Acad Sci U S A ; 121(18): e2316417121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648477

RESUMEN

Human actions are causing widespread increases in fire size, frequency, and severity in diverse ecosystems globally. This alteration of fire regimes is considered a threat to numerous animal species, but empirical evidence of how fire regimes are shifting within both threatened species' ranges and protected areas is scarce, particularly at large spatial and temporal scales. We used a big data approach to quantify multidecadal changes in fire regimes in southern Australia from 1980 to 2021, spanning 415 reserves (21.5 million ha) and 129 threatened species' ranges including birds, mammals, reptiles, invertebrates, and frogs. Most reserves and threatened species' ranges within the region have experienced declines in unburnt vegetation (≥30 y without fire), increases in recently burnt vegetation (≤5 y since fire), and increases in fire frequency. The mean percentage of unburnt vegetation within reserves declined from 61 to 36% (1980 to 2021), whereas the mean percentage of recently burnt vegetation increased from 20 to 35%, and mean fire frequency increased by 32%, with the latter two trends primarily driven by the record-breaking 2019 to 2020 fire season. The strongest changes occurred for high-elevation threatened species, and reserves of high elevation, high productivity, and strong rainfall decline, particularly in the southeast of the continent. Our results provide evidence for the widely held but poorly tested assumption that threatened species are experiencing widespread declines in unburnt habitat and increases in fire frequency. This underscores the imperative for developing management strategies that conserve fire-threatened species in an increasingly fiery future.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Incendios , Especies en Peligro de Extinción/tendencias , Animales , Australia , Reptiles , Mamíferos , Humanos , Aves/fisiología , Biodiversidad
7.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466879

RESUMEN

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Conservación de los Recursos Naturales , Biodiversidad , Bosques , Bacterias , Microbiología del Suelo
8.
Proc Natl Acad Sci U S A ; 121(13): e2313334121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498717

RESUMEN

Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.


Asunto(s)
Sequías , Ecosistema , Biodiversidad , Bosques , Hojas de la Planta , Carbono
9.
Proc Natl Acad Sci U S A ; 121(28): e2314899121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954552

RESUMEN

Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.


Asunto(s)
Cambio Climático , Bosques , Árboles , Árboles/crecimiento & desarrollo , Árboles/fisiología , Ecosistema , Clima , Sequías , Temperatura
10.
Proc Natl Acad Sci U S A ; 121(4): e2311132121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227667

RESUMEN

Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage-e.g., CO2 fertilization-and negative drivers that decrease it-e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance-regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2 fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.


Asunto(s)
Cambio Climático , Ecosistema , Estados Unidos , Dióxido de Carbono , Bosques , Árboles , Biomasa , Carbono
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38622357

RESUMEN

Pseudouridine is an RNA modification that is widely distributed in both prokaryotes and eukaryotes, and plays a critical role in numerous biological activities. Despite its importance, the precise identification of pseudouridine sites through experimental approaches poses significant challenges, requiring substantial time and resources.Therefore, there is a growing need for computational techniques that can reliably and quickly identify pseudouridine sites from vast amounts of RNA sequencing data. In this study, we propose fuzzy kernel evidence Random Forest (FKeERF) to identify pseudouridine sites. This method is called PseU-FKeERF, which demonstrates high accuracy in identifying pseudouridine sites from RNA sequencing data. The PseU-FKeERF model selected four RNA feature coding schemes with relatively good performance for feature combination, and then input them into the newly proposed FKeERF method for category prediction. FKeERF not only uses fuzzy logic to expand the original feature space, but also combines kernel methods that are easy to interpret in general for category prediction. Both cross-validation tests and independent tests on benchmark datasets have shown that PseU-FKeERF has better predictive performance than several state-of-the-art methods. This new method not only improves the accuracy of pseudouridine site identification, but also provides a certain reference for disease control and related drug development in the future.


Asunto(s)
Seudouridina , Bosques Aleatorios , Seudouridina/genética , ARN/genética , Secuencia de Bases
12.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038932

RESUMEN

MOTIVATION: Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms. RESULTS: In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.


Asunto(s)
Algoritmos , Minería de Datos , Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Minería de Datos/métodos , Humanos , Biología Computacional/métodos , Esquizofrenia/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Descubrimiento de Drogas/métodos
13.
Proc Natl Acad Sci U S A ; 120(2): e2212780120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595673

RESUMEN

Large projected increases in forest disturbance pose a major threat to future wood fiber supply and carbon sequestration in the cold-limited, Canadian boreal forest ecosystem. Given the large sensitivity of tree growth to temperature, warming-induced increases in forest productivity have the potential to reduce these threats, but research efforts to date have yielded contradictory results attributed to limited data availability, methodological biases, and regional variability in forest dynamics. Here, we apply a machine learning algorithm to an unprecedented network of over 1 million tree growth records (1958 to 2018) from 20,089 permanent sample plots distributed across both Canada and the United States, spanning a 16.5 °C climatic gradient. Fitted models were then used to project the near-term (2050 s time period) growth of the six most abundant tree species in the Canadian boreal forest. Our results reveal a large, positive effect of increasing thermal energy on tree growth for most of the target species, leading to 20.5 to 22.7% projected gains in growth with climate change under RCP 4.5 and 8.5. The magnitude of these gains, which peak in the colder and wetter regions of the boreal forest, suggests that warming-induced growth increases should no longer be considered marginal but may in fact significantly offset some of the negative impacts of projected increases in drought and wildfire on wood supply and carbon sequestration and have major implications on ecological forecasts and the global economy.


Asunto(s)
Taiga , Árboles , Canadá , Ecosistema , Bosques , Cambio Climático
14.
Proc Natl Acad Sci U S A ; 120(25): e2213815120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307438

RESUMEN

Record-breaking summer forest fires have become a regular occurrence in California. Observations indicate a fivefold increase in summer burned area (BA) in forests in northern and central California during 1996 to 2021 relative to 1971 to 1995. While the higher temperature and increased dryness have been suggested to be the leading causes of increased BA, the extent to which BA changes are due to natural variability or anthropogenic climate change remains unresolved. Here, we develop a climate-driven model of summer BA evolution in California and combine it with natural-only and historical climate simulations to assess the importance of anthropogenic climate change on increased BA. Our results indicate that nearly all the observed increase in BA is due to anthropogenic climate change as historical model simulations accounting for anthropogenic forcing yield 172% (range 84 to 310%) more area burned than simulations with natural forcing only. We detect the signal of combined historical forcing on the observed BA emerging in 2001 with no detectable influence of the natural forcing alone. In addition, even when considering fuel limitations from fire-fuel feedbacks, a 3 to 52% increase in BA relative to the last decades is expected in the next decades (2031 to 2050), highlighting the need for proactive adaptations.

15.
Proc Natl Acad Sci U S A ; 120(36): e2307519120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643216

RESUMEN

Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes-urbanization and forest edge creation-on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new "suites" of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction-including increased greenhouse gas production-in temperate forest regions that are subsumed by urban expansion, both now and in the future.


Asunto(s)
Micorrizas , Simbiosis , Animales , Urbanización , Bosques , Suelo
16.
Proc Natl Acad Sci U S A ; 120(33): e2301255120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549286

RESUMEN

Forest-savanna boundaries are ecotones that support complex ecosystem functions and are sensitive to biotic/abiotic perturbations. What drives their distribution today and how it may shift in the future are open questions. Feedbacks among climate, fire, herbivory, and land use are known drivers. Here, we show that alternating seasonal drought and waterlogging stress favors the dominance of savanna-like ecosystems over forests. We track the seasonal water-table depth as an indicator of water stress when too deep and oxygen stress when too shallow and map forest/savanna occurrence within this double-stress space in the neotropics. We find that under a given annual precipitation, savannas are favored in landscape positions experiencing double stress, which is more common as the dry season strengthens (climate driver) but only found in waterlogged lowlands (terrain driver). We further show that hydrological changes at the end of the century may expose some flooded forests to savanna expansion, affecting biodiversity and soil carbon storage. Our results highlight the importance of land hydrology in understanding/predicting forest-savanna transitions in a changing world.


Asunto(s)
Ecosistema , Pradera , Sequías , Bosques , Clima , Árboles
17.
Proc Natl Acad Sci U S A ; 120(42): e2309076120, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816051

RESUMEN

Despite the ubiquity of tropical cyclones and their impacts on forests, little is known about how tropical cyclone regimes shape the ecology and evolution of tree species. We used a simple meteorological model (HURRECON) to estimate wind fields from hurricanes in the Western North Atlantic and Eastern North Pacific tropical cyclone basins from storms occurring between 1851 and 2022. We characterize how the intensity and frequency of hurricanes differ among geographically distinct hurricane regimes and define four hurricane regimes for North America (Continental, Inland, Coastal, and Fringe). Along this coastal-to-inland gradient, we found major differences in the frequency and intensity of hurricane wind regimes. The Fringe regime experiences category 1 winds relatively frequently [return period (RP) 25 y], whereas the Inland regime experiences category 1 winds very infrequently (RP ~3,000 y). We discuss how species traits related to tree windfirmness, such as mechanical properties and crown traits, may vary along hurricane regime gradients. Quantitative characterization of forest hurricane regimes provides a critical step for understanding the evolutionary and ecological role of hurricane regimes in wind-prone forests.

18.
Proc Natl Acad Sci U S A ; 120(45): e2211853120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903268

RESUMEN

Previous work indicates that tropical forest can exist as an alternative stable state to savanna. Therefore, perturbation by climate change or human impact may lead to crossing of a tipping point beyond which there is rapid forest dieback that is not easily reversed. A hypothesized mechanism for such bistability is feedback between fire and vegetation, where fire spreads as a contagion process on grass patches. Theoretical models have largely implemented this mechanism implicitly, by assuming a threshold dependence of fire spread on flammable vegetation. Here, we show how the nonlinear dynamics and bistability emerge spontaneously, without assuming equations or thresholds for fire spread. We find that the forest geometry causes the nonlinearity that induces bistability. We demonstrate this in three steps. First, we model forest and fire as interacting contagion processes on grass patches, showing that spatial structure emerges due to two counteracting effects on the forest perimeter: forest expansion by dispersal and forest erosion by fires originating in adjacent grassland. Then, we derive a landscape-scale balance equation in which these two effects link forest geometry and dynamics: Forest expands proportionally to its perimeter, while it shrinks proportionally to its perimeter weighted by adjacent grassland area. Finally, we show that these perimeter quantities introduce nonlinearity in our balance equation and lead to bistability. Relying on the link between structure and dynamics, we propose a forest resilience indicator that could be used for targeted conservation or restoration.

19.
Proc Natl Acad Sci U S A ; 120(22): e2221346120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216556

RESUMEN

Forests serve a crucial role in our fight against climate change. Secondary forests provide important potential for conservation of biodiversity and climate change mitigation. In this paper, we explore whether collective property rights in the form of indigenous territories (ITs) lead to higher rates of secondary forest growth in previously deforested areas. We exploit the timing of granting of property rights, the geographic boundaries of ITs and two different methods, regression discontinuity design and difference-in-difference, to recover causal estimates. We find strong evidence that indigenous territories with secure tenure not only reduce deforestation inside their lands but also lead to higher secondary forest growth on previously deforested areas. After receiving full property rights, land inside ITs displayed higher secondary forest growth than land outside ITs, with an estimated effect of 5% using our main RDD specification, and 2.21% using our difference-in-difference research design. Furthermore, we estimate that the average age of secondary forests was 2.2 y older inside ITs with secure tenure using our main RDD specification, and 2.8 y older when using our difference-in-difference research design. Together, these findings provide evidence for the role that collective property rights can play in the push to restore forest ecosystems.


Asunto(s)
Ecosistema , Propiedad , Brasil , Conservación de los Recursos Naturales , Bosques
20.
Am J Hum Genet ; 109(2): 195-209, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032432

RESUMEN

Whole-genome sequencing resolves many clinical cases where standard diagnostic methods have failed. However, at least half of these cases remain unresolved after whole-genome sequencing. Structural variants (SVs; genomic variants larger than 50 base pairs) of uncertain significance are the genetic cause of a portion of these unresolved cases. As sequencing methods using long or linked reads become more accessible and SV detection algorithms improve, clinicians and researchers are gaining access to thousands of reliable SVs of unknown disease relevance. Methods to predict the pathogenicity of these SVs are required to realize the full diagnostic potential of long-read sequencing. To address this emerging need, we developed StrVCTVRE to distinguish pathogenic SVs from benign SVs that overlap exons. In a random forest classifier, we integrated features that capture gene importance, coding region, conservation, expression, and exon structure. We found that features such as expression and conservation are important but are absent from SV classification guidelines. We leveraged multiple resources to construct a size-matched training set of rare, putatively benign and pathogenic SVs. StrVCTVRE performs accurately across a wide SV size range on independent test sets, which will allow clinicians and researchers to eliminate about half of SVs from consideration while retaining a 90% sensitivity. We anticipate clinicians and researchers will use StrVCTVRE to prioritize SVs in probands where no SV is immediately compelling, empowering deeper investigation into novel SVs to resolve cases and understand new mechanisms of disease. StrVCTVRE runs rapidly and is publicly available.


Asunto(s)
Algoritmos , Genoma Humano , Variación Estructural del Genoma , Programas Informáticos , Aprendizaje Automático Supervisado , Conjuntos de Datos como Asunto , Exones , Genómica/métodos , Humanos , Curva ROC , Secuenciación Completa del Genoma/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda