Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 374-382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899705

RESUMEN

The nutritional quality of food can affect the health of animals. This study examined the effects of dietary supplementation with Lippia sidoides essential oil (LSEO) on the physiology of Danio rerio. Four hundred fourty-eight fish were divided into 28 tanks and subjected to different dietary treatments: a control group with no supplementation, a group with grain alcohol supplementation and five groups with LSEO at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After 15 days, histological and enzymatic analyses were conducted. The 0.25% LSEO group exhibited lower glutathione peroxidase and catalase activity compared to the 1.00% group. Additionally, fish in the 0.25% LSEO group showed improved liver, kidney and splenic integrity indices. These findings support the inclusion of 0.25% LSEO in the diet of D. rerio, suggesting potential benefits for fish physiology and encouraging further research on phytotherapeutics in fish diets.


Asunto(s)
Lippia , Aceites Volátiles , Animales , Antioxidantes/farmacología , Aceites Volátiles/farmacología , Pez Cebra , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal
2.
Chem Biodivers ; 18(6): e2000947, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33848051

RESUMEN

The ultrasound-assisted extraction (UAE) parameters of total water-soluble polysaccharides (TABPs) from Acanthopanaxbrachypus fruit were optimized by Box-Behnken design (BBD) and response surface methodology (RSM). Physicochemical, structural, and functional properties of TABPs were investigated by chemical analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), water-holding capacity (WHC), oil-holding capacity (OHC), emulsion capacity (EC), emulsion stability (ES), as well as DPPH. and ABTS.+ scavenging assays. The results showed that the maximal UAE-yield of TABPs was 3.81±0.18 % under the optimal conditions (ultrasonic power 325 W, extraction temperature 47 °C, extraction time 22 min). TABPs was rich in some beneficial element (Mg, K, Fe, Zn and Na) but little in harmful elements (Hg, Cd, As and Pb), and displayed rough surface with flake-like features and large dents, contained 93.89±0.08 % of total carbohydrate with more different monosaccharides including glucose, galactose, rhamnose, arabinose, mannose, xylose, and uronic acid in a molar ratio of 8.83 : 7.90 : 4.74 : 4.55 : 2.80 : 2.39 : 1.00, respectively. TABPs exhibited broad weight distribution (11.2-133.5 kDa), excellent thermal stability (>280 °C), WHC (0.61±0.08 g water/g sample) and OHC (4.53±0.12 g oil/g sample), as well as higher EC (43.75±1.23 %) and ES (38.32±1.50 %). Furthermore, TABPs also displayed remarkable scavenging activities on DPPH. and ABTS.+ in vitro. These findings provide a scientific basis for the applications of TABPs in functional additives for food, medicine, and cosmetics.


Asunto(s)
Antioxidantes/aislamiento & purificación , Eleutherococcus/química , Frutas/química , Polisacáridos/aislamiento & purificación , Ondas Ultrasónicas , Antioxidantes/química , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Fenómenos Químicos , Tamaño de la Partícula , Picratos/antagonistas & inhibidores , Polisacáridos/química , Polisacáridos/farmacología , Solubilidad , Ácidos Sulfónicos/antagonistas & inhibidores , Agua/química
3.
Small ; 16(29): e2001978, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32548963

RESUMEN

The discovery of Pickering emulsion templated assembly enables the design of a hybrid colloidal capsule with engineered properties. However, the underlying mechanisms by which nanoparticles affect the mechanical properties of the shell are poorly understood. Herein, in situ mechanical compression on the transmission electron microscope and aberration-corrected scanning transmission microscope are unprecedentedly implemented to study the intrinsic effect of nanoparticles on the mechanical properties of the calcium carbonate (CaCO3 )-decorated silica (SiO2 ) colloidal capsule. The stiff and brittle nature of the colloidal capsule is due to the interfacial chemical bonding between the CaCO3 nanoparticles and SiO2 inner shell. Such bonding strengthens the mechanical strength of the SiO2 shell (166 ± 14 nm) from the colloidal capsule compared to the thicker single SiO2 shell (310 ± 70 nm) from the silica hollow sphere. At elevated temperature, this interfacial bonding accelerates the formation of the single calcium silicate shell, causing shell morphology transformation and yielding significantly enhanced mechanical strength by 30.9% and ductility by 94.7%. The superior thermal durability of the heat-treated colloidal capsule holds great potential for the fabrication of the functional additives that can be applied in the wide range of applications at elevated temperatures.

4.
Chemistry ; 26(53): 12233-12241, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32472722

RESUMEN

Butyric anhydride (BA) is used as an effective functional additive to improve the electrochemical performance of a high-voltage LiNi0.5 Mn1.5 O4 (LNMO) cathode. In the presence of 0.5 wt % BA, the capacity retention of a LNMO/Li cell is significantly improved from 15.3 to 88.4 % after 200 cycles at 1 C. Furthermore, the rate performance of the LNMO/Li cell is also effectively enhanced, and the capacity goes up to 112 mAh g-1 even at 5 C, which is considerably higher than that of a LNMO/Li cell in electrolyte without BA additive (95.4 mAh g-1 at 5 C). Linear sweep voltammetry and cyclic voltammetry results reveal that the BA additive can be preferentially oxidized to construct a stable cathode electrolyte interphase (CEI) film on the LNMO cathode. Subsequently, the BA-derived CEI film can alleviate the decomposition of the electrolyte and the dissolution of Mn and Ni ions from the LNMO cathode as well as maintain the structural stability of LNMO during the cycling process; this leads to outstanding electrochemical performance. Thus, this work provides an effective and low-cost functional electrolyte for high-voltage LNMO-based LIBs.

5.
Chem Asian J ; 19(4): e202300960, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38143238

RESUMEN

Sodium-ion batteries (SIBs) have been recognized as one of the most promising new energy storage devices for their rich sodium resources, low cost and high safety. The electrolyte, as a bridge connecting the cathode and anode electrodes, plays a vital role in determining the performance of SIBs, such as coulombic efficiency, energy density and cycle life. Therefore, the overall performance of SIBs could be significantly improved by adjusting the electrolyte composition or adding a small number of functional additives. In this review, the fundamentals of SIB electrolytes including electrode-electrolyte interface and solvation structure are introduced. Then, the mechanisms of electrolyte additive action on SIBs are discussed, with a focus on film-forming additives, flame-retardant additives and overcharge protection additives. Finally, the future research of electrolytes is prospected from the perspective of scientific concepts and practical applications.

6.
ACS Nano ; 18(16): 10726-10737, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602344

RESUMEN

Ether-based high-voltage lithium metal batteries (HV-LMBs) are drawing growing interest due to their high compatibility with the Li metal anode. However, the commercialization of ether-based HV-LMBs still faces many challenges, including short cycle life, limited safety, and complex failure mechanisms. In this Review, we discuss recent progress achieved in ether-based electrolytes for HV-LMBs and propose a systematic design principle for the electrolyte based on three important parameters: electrochemical performance, safety, and industrial scalability. Finally, we summarize the challenges for the commercial application of ether-based HV-LMBs and suggest a roadmap for future development.

7.
Mil Med Res ; 10(1): 4, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36710340

RESUMEN

Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.


Asunto(s)
Hidrogeles , Osteoartritis , Humanos , Hidrogeles/uso terapéutico , Adhesivos/uso terapéutico , Ingeniería de Tejidos , Osteoartritis/terapia
8.
Artículo en Inglés | MEDLINE | ID: mdl-38048569

RESUMEN

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are favorable for all-solid-state lithium metal batteries (ASSLBs) to ensure safety and enhance energy density. However, their narrow work windows and unstable electrode/electrolyte interfaces hinder their practical application in high-voltage ASSLBs. Although introducing additives in SPEs has been proven to be effective to address the above issues, it could hardly optimize both cathode and anode interfaces by an individual additive. Herein, heterogeneously double-layer SPEs are constructed with two typical additives (LiPO2F2 and LiFSI), which are used to modify the LiNi0.6Co0.2Mn0.2O2 (NCM)-cathode/electrolyte interface (CEI) and lithium-anode/solid electrolyte interface (SEI), and further understand their respective mechanism in enhancing the capacity and cycling stability of ASSLBs. Specifically, LiPO2F2 not only leads to a uniform CEI layer to prevent the oxidation decomposition of PEO and LiTFSI but also ensures fast Li+ diffusion at high voltage (>3.9 V), improving the rate performances and life spans of the cells. The LiFSI contributes to a stable SEI layer with rich LiF, suppressing the growth of lithium dendrites and maximizing the specific capacity for ASSLBs. Integrating the advantages of the two functional molecules, the optimized ASSLB displays an excellent capacity of 141.4 mAh g-1 at 1C and an outstanding capacity retention of 81.6% after 400 cycles when using the NCM cathode, even reaching 154.2 mAh g-1 at 0.1 mA cm-2 with a high mass loading (6.4 mg cm-2). Additionally, the bilayer SPEs also match well with a LiFePO4 electrode with a high mass loading of 11.0 mg cm-2, displaying a high capacity of 155.7 mAh g-1 at 0.1 mA cm-2.

9.
Probiotics Antimicrob Proteins ; 14(2): 238-251, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34342858

RESUMEN

A survey is presented concerning original research articles published in well-reputed scientific journals on the isolation of lactic acid bacteria (LAB) from cheeses worldwide, where researchers evaluated the bacteriocin production by such isolates in searching for novel functional peptides that can exhibit potential for biotechnological applications. Seventy-one articles were published in the period of study, with contributions being American (45%), Asiatic (28%), and European (21%), being Brazil-USA-Mexico, Turkey-China, and France-Italy the countries that contributed the most for each said continent, respectively. Most of the isolated LAB belong to the genera Enterococcus (35%), Lactobacillus (30%), Lactococcus (14%), and Pediococcus (10%), coming from soft (64%), hard (27%), and semi-hard (9%) cheeses, predominantly. Also, scholars focused mainly on the food biopreservation (81%) and pharmaceutical field (18%) potential applications.


Asunto(s)
Bacteriocinas , Queso , Lactobacillales , Queso/microbiología , Microbiología de Alimentos , Lactobacillus
10.
Antioxidants (Basel) ; 11(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35624815

RESUMEN

Aiming to optimize soymeal-based diets for Japanese seabass (Lateolabrax japonicas), a 105-day feeding trial was conducted to evaluate the effects of functional additives, including antioxidants (ethoxyquin, thymol and carvacrol) and chelated trace elements (Cu, Mn and Zn), on the growth, immunity, antioxidant capacity and disease resistance of fish fed diets with conventional soybean meal replacing 50% of fishmeal. Three isonitrogenous (45%) and isolipidic (11%) diets were formulated: (1) standard reference diet (FM, 42% fishmeal); (2) soymeal-based diet (SBM, 21% fishmeal and 30% conventional soybean meal); (3) SBM diet supplemented 0.0665% functional additives (FAS). Each experimental diet was randomly fed to quadruplicate groups of forty feed-trained Japanese seabass (initial average body weight = 125.6 ± 0.6 g) stocked in a saltwater floating cage. Upon the conclusion of the feeding trial, lower feed intake was observed in fish fed SBM compared to those fed FM and FAS. Fish fed FM showed the highest growth performance, estimated as the weight gain rate. Notably, FAS supported faster growth of fish than those fed SBM, indicating the optimal growth performance of dietary functional additives. The feed conversion rate showed the opposite trend among dietary treatments, with the highest value in fish fed SBM. Regarding immunity, fish fed soymeal-based diets suppressed the serum alternative complement pathway activities compared to FM, whereas the respiratory burst activity in macrophages of head kidneys showed a similar picture, but no statistical differences were observed. Further, fish fed soymeal-based diets had lower serum Cu-Zn SOD, CAT and GPx activities as well as liver vitamin E levels and scavenging rates of hydroxyl radical but higher liver MDA contents compared to the FM-fed group. Fish fed FAS had higher serum Cu-Zn SOD and GPx activities and liver vitamin E levels than those fed SBM, suggesting the enhancement of antioxidant capacity of dietary functional additives. For the disease resistance against Vibrio harveyi infection, fish fed SBM had the highest cumulative mortality, followed by the FAS and FM groups. Additionally, the biomarkers related to the immune and antioxidant capacities had a positive correlation with the relative abundance of Paracoccus and Pseudomonas, while liver MDA levels had a negative correlation with the relative abundance of Pseudomonas and Psychrobacter. Collectively, soymeal replacing 50% of fishmeal suppressed the growth, immunity, antioxidant capacity and disease resistance of Japanese seabass, while dietary supplementation of antioxidants and chelated trace elements could mitigate soymeal-induced adverse effects on growth and disease resistance through the improvement in antioxidant capacity and regulation of gut microbiota.

11.
Carbohydr Polym ; 293: 119728, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798424

RESUMEN

Cellulosic paper has combined characteristics of renewability, biodegradability, flexibility, and recyclability. Based on disassembly-initiated fiber processing, the conversion of regular paper into a multifunctional wet-strength product was explored. In this concept, disassembly generates cellulosic additives for surface engineering. Encouragingly, the use of the aqueous solvent system containing mixed metal salts allows controllable fiber disassembly and formation of room-temperature-stable cellulosic solutions, leading to wet and dry strengthening of paper following cellulose regeneration. In-situ generation of cellulosic film-forming additives led to the increase of dry and wet strengths by more than 8 and 35 times respectively, in the case of a typical grade of quantitative filter paper. The engineered paper shows flame-retardant, antibacterial, and liquid-barrier features. The combination of functional properties of cellulosic paper can shed light on diversified applications, e.g., replacement of difficult-to-degrade synthetic plastics.


Asunto(s)
Retardadores de Llama , Antibacterianos/farmacología , Celulosa , Fibras de la Dieta , Filtración
12.
Animals (Basel) ; 12(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35158571

RESUMEN

Recent research is increasingly shedding light on the important role that microbial metabolites such as γ-aminobutyric acid (GABA) play in the context of nutrition, cognition, immune function, and the modulation of the gut microbiome. Yet, very few trials were conducted to assess the effects of its supplementation on biomarkers of fish health. Therefore, an eight-week feeding trial was devised to evaluate GABA supplementation in juvenile olive flounder, (Paralichthys olivaceus). A total of 630 fish with an average weight of 4.90 ± 0.10 g (±SD) were randomly assigned to one of seven triplicate groups and fed a non-GABA supplemented diet (CON, with 92 mg/kg GABA content), a positive control with 4 g/kg oxytetracycline (OTC), and five other diets supplemented with 50, 100, 150, 200 and 250 mg/kg GABA (corresponding to a total GABA content of 154, 229, 282, 327 and 352 mg/kg, respectively). Growth, blood chemistry, nonspecific immunity, digestive enzyme activity and disease resistance were assessed. The results showed that 100 and 150 mg/kg GABA supplementation consistently yielded significant improvements (p < 0.05) in growth, intestinal amylase, serum lysozyme, and survival against infection with Streptococcus iniae. Based on polynomial analysis, the optimal supplementation level was determined to be 237 mg/kg. These results support GABA as an important functional feed additive in juvenile olive flounder.

13.
Materials (Basel) ; 14(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065230

RESUMEN

Biodegradable materials are used in the manufacture of packaging and compostable films and various types of medical products. They have demonstrated a large number of potential practical applications in medicine and particularly in the treatment of various cardiac, vascular, and orthopedic conditions in adults as well in children. In our research, the extrusion-cooking technique was applied to prepare thermoplastic starch (TPS), which was then utilized to obtain environmentally friendly starch-based films. Potato starch was the basic raw material exploited. Polyvinyl alcohol and keratin were used as functional additives in amounts from 0.5 to 3%, while 20% of glycerol was harnessed as a plasticizer. The processing of the thermoplastic starch employed a single screw extruder-cooker with an L/D ratio of 16. The film blowing process was carried out using a film-blowing laboratory line with L/D = 36. FTIR Spectroscopy was applied for the assignment of the prominent functional groups. The results showed that the processing efficiency of thermoplastic starch with functional additives varied depending on the level of polyvinyl alcohol and keratin addition. Moreover, the FTIR data correlated with the changes in the physical properties of the tested films. The analysis of FTIR spectra revealed several changes in the intensity of bands originating from stretching vibrations characteristic of the -OH substituent. The changes observed depended on the presence/lack of the hydrogen bonding occurring upon interactions between the starch molecules and the various additives used. In addition, notable changes were observed in bands assigned to glycoside bonds in the starch.

14.
Int J Biol Macromol ; 164: 304-320, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682968

RESUMEN

A number of studies have established the potential of chitosan and alginate-based edible film/coatings for preserving the quality attributes of fruits and vegetables. Findings demonstrate that these films/coatings act as a barrier on the surface of fruits and vegetables which causes higher moisture and water retention, create favourable micro-environments by optimizing the concentration of gases and delays ripening. Sincere efforts are being further made to improve the efficiency of edible films using functional additives such as phenolics, essential oils (EOs) and nano-forms. These additives have unlocked a new dimension for enhancing functional properties of alginate/chitosan-based films. These functional compounds are now emerging as an important component of edible films/coatings for prolonging shelf-life of fruits and vegetables. The present review comprehensively elaborates recent studies on functional additives and their mechanism of action. Here we also establish their proficiency in extending quality and shelf-life of various fruits including guava, pear, blueberries and vegetables like cucumber, capsicum and mushroom. Principles behind antimicrobial and antioxidant activities of additives in preventing the food spoilage are also reviewed. Competency of phenolics, EOs and nano-forms in extending the shelf-life without affecting the nutritional properties and safety aspects of the fruits and vegetables still require further attention.


Asunto(s)
Alginatos/química , Quitosano/química , Materiales Biocompatibles Revestidos/química , Películas Comestibles , Conservación de Alimentos , Frutas , Verduras , Embalaje de Alimentos , Conservantes de Alimentos/química
15.
ACS Appl Mater Interfaces ; 11(18): 16605-16618, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965002

RESUMEN

Two selected and designed fluorinated cyclic phosphorus(III)-based compounds, namely 2-(2,2,3,3,3-pentafluoropropoxy)-1,3,2-dioxaphospholane (PFPOEPi) and 2-(2,2,3,3,3-pentafluoro-propoxy)-4-(trifluormethyl)-1,3,2-dioxaphospholane (PFPOEPi-1CF3), were synthesized and comprehensively characterized for high voltage application in lithium-ion batteries (LIBs). Cyclic voltammetry (CV) and constant current cycling were conducted, followed by post mortem analysis of the NMC111 electrode surface via scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). To support and complement obtained experimental results, density functional theory (DFT) calculations and molecular dynamics (MD) simulations were performed. Theoretical and experimental findings show that the considered phospholane molecule class enables high voltage LIB application by sacrificial decomposition on the cathode surface and involvement in the formation of a cathode electrode interphase (CEI) via polymerization reaction. In addition, obtained results point out that the introduction of the CF3 group has a significant influence on the formation and dynamics of the CEI as well as on the overall cell performance, as the cell impedance as well as the thickness of the CEI is increased compared to the cells containing PFPOEPi, which results in a decreased cycling performance. This systematic approach allows researchers to understand the structure-reactivity relationship of the newly synthesized compounds and helps to further tailor the vital physicochemical properties of functional electrolyte additives relevant for high voltage LIB application.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda