RESUMEN
The emerging paradigms of Beyond-5G (B5G), 6G and Future Networks (FN), will capsize the current design strategies, leveraging new technologies and unprecedented solutions. Focusing on the telecom segment and on low-complexity Hardware (HW) components, this contribution identifies RF-MEMS, i.e., Radio Frequency (RF) passives in Microsystem (MEMS) technology, as a key-enabler of 6G/FN. This work introduces four design concepts of RF-MEMS series ohmic switches realized in a surface micromachining process. S-parameters (Scattering parameters) are measured and simulated with a Finite Element Method (FEM) tool, in the frequency range from 100 MHz to 110 GHz. Based on such a set of data, three main aspects are covered. First, validation of the FEM-based modelling methodology is carried out. Then, pros and cons in terms of RF characteristics for each design concept are identified and discussed, in view of B5G, 6G and FN applications. Moreover, ad hoc metrics are introduced to better quantify the S-parameters predictive errors of simulated vs. measured data. In particular, the latter items will be further exploited in the second part of this work (to be submitted later), in which a discussion around compact modelling techniques applied to RF-MEMS switching concepts will also be included.
RESUMEN
Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an "evolution" or "revolution" from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, the research direction has recently shifted towards the upcoming generation of mobile communication system, known as the sixth generation (6G), which is expected to drastically provide significant and evolutionary, if not revolutionary, improvements in mobile networks. The promise of extremely high data rates (in terabits), artificial intelligence (AI), ultra-low latency, near-zero/low energy, and immense connected devices is expected to enhance the connectivity, sustainability, and trustworthiness and provide some new services, such as truly immersive "extended reality" (XR), high-fidelity mobile hologram, and a new generation of entertainment. Sixth generation and its vision are still under research and open for developers and researchers to establish and develop their directions to realize future 6G technology, which is expected to be ready as early as 2028. This paper reviews 6G mobile technology, including its vision, requirements, enabling technologies, and challenges. Meanwhile, a total of 11 communication technologies, including terahertz (THz) communication, visible light communication (VLC), multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning (ML) in wireless transmission techniques, are presented. Moreover, this paper compares 5G and 6G in terms of services, key technologies, and enabling communications techniques. Finally, it discusses the crucial future directions and technology developments in 6G.
Asunto(s)
Inteligencia Artificial , Comunicación , Aprendizaje Automático , Tecnología , Tecnología InalámbricaRESUMEN
Improved Spectral Efficiency (SE) is a prominent feature of Massive Multiple-Input and Multiple-Output systems. These systems are prepared with antenna clusters at receiver (Rx) and transmitter (Tx). In this paper, we examined a massive MIMO system to increase SE in each cell that ultimately improves the area throughput of the system. We are aiming to find appropriate values of average cell-density (D), available bandwidth (B), and SE to maximize area throughput because it is the function of these parameters. Likewise, a SE augmentation model was developed to attain an increased transmit power and antenna array gain. The proposed model also considers the inter-user interference from neighboring cells along with incident angles of desired and interfering users. Moreover, simulation results validate the proposed model that is implementable in real-time scenarios by realizing maximum SE of 12.79 bits/s/Hz in Line of Sight (LoS) and 12.69 bits/s/Hz in Non-Line of Sight (NLoS) scenarios, respectively. The proposed results also substantiate the SE augmentation because it is a linear function of transmit power and array gain while using the Uniform Linear Array (ULA) configuration. The findings of this work ensure the efficient transmission of information in future networks.
RESUMEN
Smart technologies are advancing the development of cutting-edge systems by exploring the future network. The Internet of Things (IoT) and many multimedia sensors interact with each other for collecting and transmitting visual data. However, managing enormous amounts of data from numerous network devices is one of the main research challenges. In this context, various IoT systems have been investigated and have provided efficient data retrieval and processing solutions. For multimedia systems, however, controlling inefficient bandwidth utilization and ensuring timely transmission of vital information are key research concerns. Moreover, to transfer multimedia traffic while balancing communication costs for the IoT system, a sustainable solution with intelligence in real-life applications is demanded. Furthermore, trust must be formed for technological advancement to occur; such an approach provides the smart communication paradigm with the incorporation of edge computing. This study proposed a model for optimizing multimedia using a combination of edge computing intelligence and authentic strategies. Mobile edges analyze network states to discover the system's status and minimize communication disruptions. Moreover, direct and indirect authentication determines the reliability of data forwarders and network stability. The proposed authentication approach minimizes the possibility of data compromise and increases trust in multimedia surveillance systems. Using simulation testing, the proposed model outperformed other comparable work in terms of byte delivery, packet overhead, packet delay, and data loss metrics.