Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426327

RESUMEN

Cluster assignment is vital to analyzing single-cell RNA sequencing (scRNA-seq) data to understand high-level biological processes. Deep learning-based clustering methods have recently been widely used in scRNA-seq data analysis. However, existing deep models often overlook the interconnections and interactions among network layers, leading to the loss of structural information within the network layers. Herein, we develop a new self-supervised clustering method based on an adaptive multi-scale autoencoder, called scAMAC. The self-supervised clustering network utilizes the Multi-Scale Attention mechanism to fuse the feature information from the encoder, hidden and decoder layers of the multi-scale autoencoder, which enables the exploration of cellular correlations within the same scale and captures deep features across different scales. The self-supervised clustering network calculates the membership matrix using the fused latent features and optimizes the clustering network based on the membership matrix. scAMAC employs an adaptive feedback mechanism to supervise the parameter updates of the multi-scale autoencoder, obtaining a more effective representation of cell features. scAMAC not only enables cell clustering but also performs data reconstruction through the decoding layer. Through extensive experiments, we demonstrate that scAMAC is superior to several advanced clustering and imputation methods in both data clustering and reconstruction. In addition, scAMAC is beneficial for downstream analysis, such as cell trajectory inference. Our scAMAC model codes are freely available at https://github.com/yancy2024/scAMAC.


Asunto(s)
Análisis de Datos , Análisis de Expresión Génica de una Sola Célula , Análisis por Conglomerados , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Algoritmos
2.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36715275

RESUMEN

A large number of works have presented the single-cell RNA sequencing (scRNA-seq) to study the diversity and biological functions of cells at the single-cell level. Clustering identifies unknown cell types, which is essential for downstream analysis of scRNA-seq samples. However, the high dimensionality, high noise and pervasive dropout rate of scRNA-seq samples have a significant challenge to the cluster analysis of scRNA-seq samples. Herein, we propose a new adaptive fuzzy clustering model based on the denoising autoencoder and self-attention mechanism called the scDASFK. It implements the comparative learning to integrate cell similar information into the clustering method and uses a deep denoising network module to denoise the data. scDASFK consists of a self-attention mechanism for further denoising where an adaptive clustering optimization function for iterative clustering is implemented. In order to make the denoised latent features better reflect the cell structure, we introduce a new adaptive feedback mechanism to supervise the denoising process through the clustering results. Experiments on 16 real scRNA-seq datasets show that scDASFK performs well in terms of clustering accuracy, scalability and stability. Overall, scDASFK is an effective clustering model with great potential for scRNA-seq samples analysis. Our scDASFK model codes are freely available at https://github.com/LRX2022/scDASFK.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Algoritmos
3.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793922

RESUMEN

Electrical tomography sensors have been widely used for pipeline parameter detection and estimation. Before they can be used in formal applications, the sensors must be calibrated using enough labeled data. However, due to the high complexity of actual measuring environments, the calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can generally decrease the error of labeling data in any sensor calibration process.

4.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474927

RESUMEN

Accurate short-term load forecasting (STLF) is essential for power grid systems to ensure reliability, security and cost efficiency. Thanks to advanced smart sensor technologies, time-series data related to power load can be captured for STLF. Recent research shows that deep neural networks (DNNs) are capable of achieving accurate STLP since they are effective in predicting nonlinear and complicated time-series data. To perform STLP, existing DNNs use time-varying dynamics of either past load consumption or past power correlated features such as weather, meteorology or date. However, the existing DNN approaches do not use the time-invariant features of users, such as building spaces, ages, isolation material, number of building floors or building purposes, to enhance STLF. In fact, those time-invariant features are correlated to user load consumption. Integrating time-invariant features enhances STLF. In this paper, a fuzzy clustering-based DNN is proposed by using both time-varying and time-invariant features to perform STLF. The fuzzy clustering first groups users with similar time-invariant behaviours. DNN models are then developed using past time-varying features. Since the time-invariant features have already been learned by the fuzzy clustering, the DNN model does not need to learn the time-invariant features; therefore, a simpler DNN model can be generated. In addition, the DNN model only learns the time-varying features of users in the same cluster; a more effective learning can be performed by the DNN and more accurate predictions can be achieved. The performance of the proposed fuzzy clustering-based DNN is evaluated by performing STLF, where both time-varying features and time-invariant features are included. Experimental results show that the proposed fuzzy clustering-based DNN outperforms the commonly used long short-term memory networks and convolution neural networks.

5.
Sensors (Basel) ; 23(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37447691

RESUMEN

Payload weight detection plays an important role in condition monitoring and automation of cranes. Crane cells and scales are commonly used in industrial practice; however, when their installation to the hoisting equipment is not possible or costly, an alternative solution is to derive information about the load weight indirectly from other sensors. In this paper, a static payload weight is estimated based on the local strain of a crane's girder and the current position of the trolley. Soft-computing-based techniques are used to derive a nonlinear input-output relationship between the measured signals and the estimated payload mass. Data-driven identification is performed using a novel variant of genetic programming named grammar-guided genetic programming with sparse regression, multi-gene genetic programming, and subtractive fuzzy clustering method combined with the least squares algorithm on experimental data obtained from a laboratory overhead crane. A comparative analysis of the methods showed that multi-gene genetic programming and grammar-guided genetic programming with sparse regression performed similarly in terms of accuracy and both performed better than subtractive fuzzy clustering. The novel approach was able to find a more parsimonious model with its direct implantation having a lower execution time.


Asunto(s)
Algoritmos , Industrias , Automatización , Análisis por Conglomerados
6.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139487

RESUMEN

Image segmentation is a well-known image processing task that consists of partitioning an image into homogeneous areas. It is applied to remotely sensed imagery for many problems such as land use classification and landscape changes. Recently, several hybrid remote sensing image segmentation techniques have been proposed that include metaheuristic approaches in order to increase the segmentation accuracy; however, the critical point of these approaches is the high computational complexity, which affects time and memory consumption. In order to overcome this criticality, we propose a fuzzy-based image segmentation framework implemented in a GIS-based platform for remotely sensed images; furthermore, the proposed model allows us to evaluate the reliability of the segmentation. The Fast Generalized Fuzzy c-means algorithm is implemented to segment images in order to detect local spatial relations between pixels and the Triple Center Relation validity index is used to find the optimal number of clusters. The framework elaborates the composite index to be analyzed starting by multiband remotely sensed images. For each cluster, a segmented image is obtained in which the pixel value represents, transformed into gray levels, the graph belonging to the cluster. A final thematic map is built in which the pixels are classified based on the assignment to the cluster to which they belong with the highest membership degree. In addition, the reliability of the classification is estimated by associating each class with the average of the membership degrees of the pixels assigned to it. The method was tested in the study area consisting of the south-western districts of the city of Naples (Italy) for the segmentation of composite indices maps determined by multiband remote sensing images. The segmentation results are consistent with the segmentations of the study area by morphological and urban characteristics, carried out by domain experts. The high computational speed of the proposed image segmentation method allows it to be applied to massive high-resolution remote sensing images.

7.
J Digit Imaging ; 36(2): 588-602, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36441277

RESUMEN

Spleen tissue segmentation is an essential process for analyzing various immunological diseases as observed in the cryo-imaging data. Because manual labeling of the spleen tissue by human experts is not efficient, an automatic segmentation algorithm is needed. In this study, we developed a novel algorithm for automatically segmenting spleen substructures including white pulp and red pulp for the first time. The algorithm is designed for datasets created by a cryo-imaging system. This unique technology can effectively enable cellular tracking anywhere in the whole mouse with single-cell sensitivity. The proposed algorithm consists of four components: initial spleen mask creation, feature extraction, Supervised Patch-based Fuzzy c-Mean (spFCM) classification, and post-processing. The algorithm accurately and efficiently labeled spleen tissues in all experiment settings. The algorithm also improved the spleen segmentation throughput by 90 folds as compared to the manual segmentation. Moreover, we show that our novel spFCM algorithm outperformed traditional fast-learning classifiers as well as the U-Net deep-learning model in many aspects. Two major contributions of this paper are (1) an explainable algorithm for segmenting spleen tissues in cryo-images for the first time and (2) an spFCM algorithm as a new classifier. We also discussed that our work can be beneficial to researchers who work not only in the fields of graft-versus-host disease (GVHD) mouse models, but also in that of other immunological disease models where spleen analysis is essential. Future work building upon our research may lay the foundations for biomedical studies that utilize cryo-imaging technology.


Asunto(s)
Diagnóstico por Imagen , Bazo , Humanos , Animales , Ratones , Bazo/diagnóstico por imagen , Algoritmos , Aprendizaje , Procesamiento de Imagen Asistido por Computador/métodos
8.
J Environ Manage ; 342: 118177, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210819

RESUMEN

Preparation of pipeline risk zoning is essential for pipeline construction and safe operation. Landslides are one of the main sources of risk to the safe operations of oil and gas pipelines in mountainous areas. This work aims to propose a quantitative assessment model of landslide-induced long-distance pipeline risk by analyzing historical landslide hazard data along oil and gas pipelines. Using the Changshou-Fuling-Wulong-Nanchuan (CN) gas pipeline dataset, two independent assessments were carried out: landslide susceptibility assessment and pipeline vulnerability assessment. Firstly, the study combined the recursive feature elimination and particle swarm optimization-AdaBoost method (RFE-PSO-AdaBoost) to develop a landslide susceptibility mapping model. The RFE method was used to select the conditioning factors, while PSO was used to tune the hyper-parameters. Secondly, considering the angular relationship between the pipelines and landslides, and the segmentation of the pipelines using the fuzzy clustering (FC), the CRITIC method (FC-CRITIC) was combined to develop a pipeline vulnerability assessment model. Accordingly, a pipeline risk map was obtained based on pipeline vulnerability and landslide susceptibility assessment. The study results show that almost 35.3% of the slope units were in extremely high susceptibility zones, 6.68% of the pipelines were in extremely high vulnerability areas, the southern and eastern pipelines segmented in the study area were located in high risk areas and coincided well with the distribution of landslides. The proposed hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines can provide a scientific and reasonable risk classification for new planning or in service pipelines to avoid landslide-oriented risk and ensure their safe operation in mountainous areas.


Asunto(s)
Deslizamientos de Tierra , Sistemas de Información Geográfica , Medición de Riesgo/métodos , Aprendizaje Automático , Planificación de Ciudades
9.
Entropy (Basel) ; 25(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36981399

RESUMEN

Since the Fuzzy C-Means algorithm is incapable of considering the influence of different features and exponential constraints on high-dimensional and complex data, a fuzzy clustering algorithm based on non-Euclidean distance combining feature weights and entropy weights is proposed. The proposed algorithm is based on the Fuzzy C-Means soft clustering algorithm to deal with high-dimensional and complex data. The objective function of the new algorithm is modified with the help of two different entropy terms and a non-Euclidean way of computing the distance. The distance calculation formula enhances the efficiency of extracting the contribution of different features. The first entropy term helps to minimize the clusters' dispersion and maximize the negative entropy to control the clustering process, which also promotes the association between the samples. The second entropy term helps to control the weights of features since different features have different weights in the clustering process. Experiments on real-world datasets indicate that the proposed algorithm gives better clustering results than other algorithms. The experiments demonstrate the proposed algorithm's robustness by analyzing the parameters' sensitivity and comparing the computational distance formulas. In summary, the improved algorithm improves classification performance under noisy interference and high-dimensional datasets, increases computational efficiency, performs well in real-world high-dimensional datasets, and encourages the development of robust noise-resistant high-dimensional fuzzy clustering algorithms.

10.
J Synchrotron Radiat ; 29(Pt 6): 1495-1503, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345757

RESUMEN

The microscopy research at the Bionanoprobe (currently at beamline 9-ID and later 2-ID after APS-U) of Argonne National Laboratory focuses on applying synchrotron X-ray fluorescence (XRF) techniques to obtain trace elemental mappings of cryogenic biological samples to gain insights about their role in critical biological activities. The elemental mappings and the morphological aspects of the biological samples, in this instance, the bacterium Escherichia coli (E. Coli), also serve as label-free biological fingerprints to identify E. coli cells that have been treated differently. The key limitations of achieving good identification performance are the extraction of cells from raw XRF measurements via binary conversion, definition of features, noise floor and proportion of cells treated differently in the measurement. Automating cell extraction from raw XRF measurements across different types of chemical treatment and the implementation of machine-learning models to distinguish cells from the background and their differing treatments are described. Principal components are calculated from domain knowledge specific features and clustered to distinguish healthy and poisoned cells from the background without manual annotation. The cells are ranked via fuzzy clustering to recommend regions of interest for automated experimentation. The effects of dwell time and the amount of data required on the usability of the software are also discussed.


Asunto(s)
Escherichia coli , Sincrotrones , Rayos X , Microscopía Fluorescente , Aprendizaje Automático
11.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36433278

RESUMEN

Accurate blood glucose (BG) forecasting is key in diabetes management, as it allows preventive actions to mitigate harmful hypoglycemic/hyperglycemic episodes. Considering the encouraging results obtained by seasonal stochastic models in proof-of-concept studies, this work assesses the methodology in two datasets (open-loop and closed-loop) recorded in free-living conditions. First, similar postprandial glycemic profiles are grouped together with fuzzy C-means clustering. Then, a seasonal stochastic model is identified for each cluster. Finally, real-time BG forecasting is performed by weighting each model's prediction. The proposed methodology (named C-SARIMA) is compared to other linear and nonlinear black-box methods: autoregressive integrated moving average (ARIMA), its variant with input (ARIMAX), a feed-forward neural network (NN), and its modified version (NN-X) fed by BG, insulin, and carbohydrates (timing and dosing) information for several prediction horizons (PHs). In the open-loop dataset, C-SARIMA grants a median root-mean-squared error (RMSE) of 20.13 mg/dL (PH = 30) and 27.23 mg/dL (PH = 45), not significantly different from ARIMA and NN. Over a longer PH, C-SARIMA achieves an RMSE = 31.96 mg/dL (PH = 60) and RMSE = 33.91 mg/dL (PH = 75), significantly outperforming the ARIMA and NN, without significant differences from the ARIMAX for PH ≥ 45 and the NN-X for PH ≥ 60. Similar results hold on the closed-loop dataset: for PH = 30 and 45 min, the C-SARIMA achieves an RMSE = 21.63 mg/dL and RMSE = 29.67 mg/dL, not significantly different from the ARIMA and NN. On longer PH, the C-SARIMA outperforms the ARIMA for PH > 45 and the NN for PH > 60 without significant differences from the ARIMAX for PH ≥ 45. Although using less input information, the C-SARIMA achieves similar performance to other prediction methods such as the ARIMAX and NN-X and outperforming the CGM-only approaches on PH > 45min.


Asunto(s)
Glucosa , Hipoglucemia , Humanos , Condiciones Sociales , Estaciones del Año , Comidas , Glucemia
12.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015930

RESUMEN

The rapid growth of digital information has produced massive amounts of time series data on rich features and most time series data are noisy and contain some outlier samples, which leads to a decline in the clustering effect. To efficiently discover the hidden statistical information about the data, a fast weighted fuzzy C-medoids clustering algorithm based on P-splines (PS-WFCMdd) is proposed for time series datasets in this study. Specifically, the P-spline method is used to fit the functional data related to the original time series data, and the obtained smooth-fitting data is used as the input of the clustering algorithm to enhance the ability to process the data set during the clustering process. Then, we define a new weighted method to further avoid the influence of outlier sample points in the weighted fuzzy C-medoids clustering process, to improve the robustness of our algorithm. We propose using the third version of mueen's algorithm for similarity search (MASS 3) to measure the similarity between time series quickly and accurately, to further improve the clustering efficiency. Our new algorithm is compared with several other time series clustering algorithms, and the performance of the algorithm is evaluated experimentally on different types of time series examples. The experimental results show that our new method can speed up data processing and the comprehensive performance of each clustering evaluation index are relatively good.


Asunto(s)
Algoritmos , Lógica Difusa , Análisis por Conglomerados , Factores de Tiempo
13.
IEEE Trans Fuzzy Syst ; 30(8): 2902-2914, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36345371

RESUMEN

A global pandemic scenario is witnessed worldwide owing to the menace of the rapid outbreak of the deadly COVID-19 virus. To save mankind from this apocalyptic onslaught, it is essential to curb the fast spreading of this dreadful virus. Moreover, the absence of specialized drugs has made the scenario even more badly and thus an early-stage adoption of necessary precautionary measures would provide requisite supportive treatment for its prevention. The prime objective of this article is to use radiological images as a tool to help in early diagnosis. The interval type 2 fuzzy clustering is blended with the concept of superpixels, and metaheuristics to efficiently segment the radiological images. Despite noise sensitivity of watershed-based approach, it is adopted for superpixel computation owing to its simplicity where the noise problem is handled by the important edge information of the gradient image is preserved with the help of morphological opening and closing based reconstruction operations. The traditional objective function of the fuzzy c-means clustering algorithm is modified to incorporate the spatial information from the neighboring superpixel-based local window. The computational overhead associated with the processing of a huge amount of spatial information is reduced by incorporating the concept of superpixels and the optimal clusters are determined by a modified version of the flower pollination algorithm. Although the proposed approach performs well but should not be considered as an alternative to gold standard detection tests of COVID-19. Experimental results are found to be promising enough to deploy this approach for real-life applications.

14.
Entropy (Basel) ; 24(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36554180

RESUMEN

In this study, a high-performing scheme is introduced to delimit benign and malignant masses in breast ultrasound images. The proposal is built upon by the Nonlocal Means filter for image quality improvement, an Intuitionistic Fuzzy C-Means local clustering algorithm for superpixel generation with high adherence to the edges, and the DBSCAN algorithm for the global clustering of those superpixels in order to delimit masses' regions. The empirical study was performed using two datasets, both with benign and malignant breast tumors. The quantitative results with respect to the BUSI dataset were JSC≥0.907, DM≥0.913, HD≥7.025, and MCR≤6.431 for benign masses and JSC≥0.897, DM≥0.900, HD≥8.666, and MCR≤8.016 for malignant ones, while the MID dataset resulted in JSC≥0.890, DM≥0.905, HD≥8.370, and MCR≤7.241 along with JSC≥0.881, DM≥0.898, HD≥8.865, and MCR≤7.808 for benign and malignant masses, respectively. These numerical results revealed that our proposal outperformed all the evaluated comparative state-of-the-art methods in mass delimitation. This is confirmed by the visual results since the segmented regions had a better edge delimitation.

15.
BMC Bioinformatics ; 22(1): 480, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34607566

RESUMEN

BACKGROUND: Identifying interaction effects between genes is one of the main tasks of genome-wide association studies aiming to shed light on the biological mechanisms underlying complex diseases. Multifactor dimensionality reduction (MDR) is a popular approach for detecting gene-gene interactions that has been extended in various forms to handle binary and continuous phenotypes. However, only few multivariate MDR methods are available for multiple related phenotypes. Current approaches use Hotelling's T2 statistic to evaluate interaction models, but it is well known that Hotelling's T2 statistic is highly sensitive to heavily skewed distributions and outliers. RESULTS: We propose a robust approach based on nonparametric statistics such as spatial signs and ranks. The new multivariate rank-based MDR (MR-MDR) is mainly suitable for analyzing multiple continuous phenotypes and is less sensitive to skewed distributions and outliers. MR-MDR utilizes fuzzy k-means clustering and classifies multi-locus genotypes into two groups. Then, MR-MDR calculates a spatial rank-sum statistic as an evaluation measure and selects the best interaction model with the largest statistic. Our novel idea lies in adopting nonparametric statistics as an evaluation measure for robust inference. We adopt tenfold cross-validation to avoid overfitting. Intensive simulation studies were conducted to compare the performance of MR-MDR with current methods. Application of MR-MDR to a real dataset from a Korean genome-wide association study demonstrated that it successfully identified genetic interactions associated with four phenotypes related to kidney function. The R code for conducting MR-MDR is available at https://github.com/statpark/MR-MDR . CONCLUSIONS: Intensive simulation studies comparing MR-MDR with several current methods showed that the performance of MR-MDR was outstanding for skewed distributions. Additionally, for symmetric distributions, MR-MDR showed comparable power. Therefore, we conclude that MR-MDR is a useful multivariate non-parametric approach that can be used regardless of the phenotype distribution, the correlations between phenotypes, and sample size.


Asunto(s)
Estudio de Asociación del Genoma Completo , Reducción de Dimensionalidad Multifactorial , Algoritmos , Simulación por Computador , Epistasis Genética , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple
16.
BMC Pregnancy Childbirth ; 21(1): 306, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863296

RESUMEN

BACKGROUND: Etiopathogenesis of preterm birth (PTB) is multifactorial, with a universe of risk factors interplaying between the mother and the environment. It is of utmost importance to identify the most informative factors in order to estimate the degree of PTB risk and trace an individualized profile. The aims of the present study were: 1) to identify all acknowledged risk factors for PTB and to select the most informative ones for defining an accurate model of risk prediction; 2) to verify predictive accuracy of the model and 3) to identify group profiles according to the degree of PTB risk based on the most informative factors. METHODS: The Maternal Frailty Inventory (MaFra) was created based on a systematic review of the literature including 174 identified intrauterine (IU) and extrauterine (EU) factors. A sample of 111 pregnant women previously categorized in low or high risk for PTB below 37 weeks, according to ACOG guidelines, underwent the MaFra Inventory. First, univariate logistic regression enabled p-value ordering and the Akaike Information Criterion (AIC) selected the model including the most informative MaFra factors. Second, random forest classifier verified the overall predictive accuracy of the model. Third, fuzzy c-means clustering assigned group membership based on the most informative MaFra factors. RESULTS: The most informative and parsimonious model selected through AIC included Placenta Previa, Pregnancy Induced Hypertension, Antibiotics, Cervix Length, Physical Exercise, Fetal Growth, Maternal Anxiety, Preeclampsia, Antihypertensives. The random forest classifier including only the most informative IU and EU factors achieved an overall accuracy of 81.08% and an AUC of 0.8122. The cluster analysis identified three groups of typical pregnant women, profiled on the basis of the most informative IU and EU risk factors from a lower to a higher degree of PTB risk, which paralleled time of birth delivery. CONCLUSIONS: This study establishes a generalized methodology for building-up an evidence-based holistic risk assessment for PTB to be used in clinical practice. Relevant and essential factors were selected and were able to provide an accurate estimation of degree of PTB risk based on the most informative constellation of IU and EU factors.


Asunto(s)
Nacimiento Prematuro/epidemiología , Adolescente , Adulto , Femenino , Humanos , Persona de Mediana Edad , Embarazo , Nacimiento Prematuro/etiología , Factores de Riesgo , Adulto Joven
17.
J Dairy Res ; 88(1): 69-72, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33593450

RESUMEN

This research communication presents an automatic method for the counting of somatic cells in buffalo milk, which includes the application of a fuzzy clustering method and image processing techniques (somatic cell count with fuzzy clustering and image processing|, SCCFCI). Somatic cell count (SCC) in milk is the main biomarker for assessing milk quality and it is traditionally performed by exhaustive methods consisting of the visual observation of cells in milk smears through a microscope, which generates uncertainties associated with human interpretation. Unlike other similar works, the proposed method applies the Fuzzy C-Means (FCM) method as a preprocessing step in order to separate the images (objects) of the cells into clusters according to the color intensity. This contributes signficantly to the performance of the subsequent processing steps (thresholding, segmentation and recognition/identification). Two methods of thresholding were evaluated and the Watershed Transform was used for the identification and separation of nearby cells. A detailed statistical analysis of the results showed that the SCCFCI method is able to provide results which are consistent with those obtained by conventional counting. This method therefore represents a viable alternative for quality control in buffalo milk production.


Asunto(s)
Búfalos , Recuento de Células/veterinaria , Procesamiento de Imagen Asistido por Computador/métodos , Mastitis/veterinaria , Leche/citología , Animales , Recuento de Células/métodos , Femenino , Mastitis/patología , Microscopía , Fotograbar
18.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34640789

RESUMEN

In a world of rapidly changing technologies, reliance on complex engineered systems has become substantial. Interactions associated with such systems as well as associated manufacturing processes also continue to evolve and grow in complexity. Consider how the complexity of manufacturing processes makes engineered systems vulnerable to cascading and escalating failures; truly a highly complex and evolving system of systems. Maintaining quality and reliability requires considerations during product development, manufacturing processes, and more. Monitoring the health of the complex system while in operation/use is imperative. These considerations have compelled designers to explore fault-mechanism models and to develop corresponding countermeasures. Increasingly, there has been a reliance on embedded sensors to aid in prognosticating failures, to reduce downtime, during manufacture and system operation. However, the accuracy of estimating the remaining useful life of the system is highly dependent on the quality of the data obtained. This can be enhanced by increasing the number of sensors used, according to information theory. However, adding sensors increases total costs with the cost of the sensors and the costs associated with information-gathering procedures. Determining the optimal number of sensors, associated operating and data acquisition costs, and sensor-configuration are nontrivial. It is also imperative to avoid redundant information due to the presence of additional sensors and the efficient display of information to the decision-maker. Therefore, it is necessary to select a subset of sensors that not only reduce the cost but are also informative. While progress has been made in the sensor selection process, it is limited to either the type of the sensor, number of sensors or both. Such approaches do not address specifications of the required sensors which are integral to the sensor selection process. This paper addresses these shortcomings through a new method, OFCCaTS, to avoid the increased cost associated with health monitoring and to improve its accuracy. The proposed method utilizes a scalable multi-objective framework for sensor selection to maximize fault detection rate while minimizing the total cost of sensors. A wind turbine gearbox is considered to demonstrate the efficacy of the proposed framework.


Asunto(s)
Algoritmos , Reproducibilidad de los Resultados
19.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205288

RESUMEN

Pupil segmentation is critical for line-of-sight estimation based on the pupil center method. Due to noise and individual differences in human eyes, the quality of eye images often varies, making pupil segmentation difficult. In this paper, we propose a pupil segmentation method based on fuzzy clustering of distributed information, which first preprocesses the original eye image to remove features such as eyebrows and shadows and highlight the pupil area; then the Gaussian model is introduced into global distribution information to enhance the classification fuzzy affiliation for the local neighborhood, and an adaptive local window filter that fuses local spatial and intensity information is proposed to suppress the noise in the image and preserve the edge information of the pupil details. Finally, the intensity histogram of the filtered image is used for fast clustering to obtain the clustering center of the pupil, and this binarization process is used to segment the pupil for the next pupil localization. Experimental results show that the method has high segmentation accuracy, sensitivity, and specificity. It can accurately segment the pupil when there are interference factors such as light spots, light reflection, and contrast difference at the edge of the pupil, which is an important contribution to improving the stability and accuracy of the line-of-sight tracking.


Asunto(s)
Lógica Difusa , Procesamiento de Imagen Asistido por Computador , Algoritmos , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética , Pupila
20.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924510

RESUMEN

In this paper, a novel method to modify color images for the protanopia and deuteranopia color vision deficiencies is proposed. The method admits certain criteria, such as preserving image naturalness and color contrast enhancement. Four modules are employed in the process. First, fuzzy clustering-based color segmentation extracts key colors (which are the cluster centers) of the input image. Second, the key colors are mapped onto the CIE 1931 chromaticity diagram. Then, using the concept of confusion line (i.e., loci of colors confused by the color-blind), a sophisticated mechanism translates (i.e., removes) key colors lying on the same confusion line to different confusion lines so that they can be discriminated by the color-blind. In the third module, the key colors are further adapted by optimizing a regularized objective function that combines the aforementioned criteria. Fourth, the recolored image is obtained by color transfer that involves the adapted key colors and the associated fuzzy clusters. Three related methods are compared with the proposed one, using two performance indices, and evaluated by several experiments over 195 natural images and six digitized art paintings. The main outcomes of the comparative analysis are as follows. (a) Quantitative evaluation based on nonparametric statistical analysis is conducted by comparing the proposed method to each one of the other three methods for protanopia and deuteranopia, and for each index. In most of the comparisons, the Bonferroni adjusted p-values are <0.015, favoring the superiority of the proposed method. (b) Qualitative evaluation verifies the aesthetic appearance of the recolored images.


Asunto(s)
Defectos de la Visión Cromática , Análisis por Conglomerados , Color , Percepción de Color , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda