Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625033

RESUMEN

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Asunto(s)
Autofagia , Galectinas/metabolismo , Lisosomas/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Tuberculosis/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Galectinas/deficiencia , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Serina-Treonina Quinasas TOR/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
2.
J Biol Chem ; : 107638, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121996

RESUMEN

Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.

3.
J Biol Chem ; 300(8): 107573, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009340

RESUMEN

Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.

4.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
5.
Med Res Rev ; 44(5): 2236-2265, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38613488

RESUMEN

Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind ß-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.


Asunto(s)
Galectinas , Neoplasias , Galectinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/inmunología , Animales , Inmunidad , Inmunidad Innata
6.
J Biol Chem ; 299(12): 105400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898403

RESUMEN

Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.


Asunto(s)
Galectinas , Neoplasias , Humanos , Galectinas/metabolismo , Polisacáridos/metabolismo , Transducción de Señal , Inflamación , Ligandos
7.
J Biol Chem ; 299(12): 105416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918808

RESUMEN

Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.


Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión , Transportador de Aminoácidos Neutros Grandes 1 , Estrés Fisiológico , Humanos , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Galectina 3/metabolismo , Glicosilación , Células HeLa , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Polisacáridos/metabolismo
8.
Glycobiology ; 34(1)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37815932

RESUMEN

Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out. Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant, well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous epitope tags to achieve the specificity required to evaluate potential interactions.


Asunto(s)
Galectina 3 , ARN , Humanos , Epítopos , Galectina 3/genética , Galectina 3/metabolismo , Galectinas/metabolismo , Proteómica , Proteínas de Unión al ARN
9.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840496

RESUMEN

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Asunto(s)
Fibroblastos , Galectina 3 , Encía , Lipopolisacáridos , Periodontitis , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Encía/metabolismo , Encía/patología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
10.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750548

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Asunto(s)
Endocitosis , Galectina 1 , Galectinas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Animales , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
11.
Cell Commun Signal ; 22(1): 175, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468333

RESUMEN

Galectins constitute a class of lectins that specifically interact with ß-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.


Asunto(s)
Galectina 1 , Galectinas , Galectinas/metabolismo , Factores de Crecimiento de Fibroblastos , Glicoconjugados , Ribosomas/metabolismo
12.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801985

RESUMEN

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Asunto(s)
Escherichia coli , Galectina 3 , Isopropil Tiogalactósido , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/biosíntesis , Galectina 3/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isopropil Tiogalactósido/farmacología , Expresión Génica , Galectinas/genética , Galectinas/metabolismo , Galectinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
13.
Cell Biol Int ; 48(3): 378-385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212900

RESUMEN

The human choriocarcinoma cell line JEG-3 offers a valuable model to study galectin-16 gene (LGALS16) expression and functions in the context of placental cell differentiation and cancer cell biology. Recent evidence indicates that cAMP-mediated signaling pathways might be responsible for the upregulation of LGALS16; however, the underlying mechanisms are unknown. Here, we employed biochemical inhibitors of the cAMP cascade and CRISPR/Cas9 engineered cells to assess regulatory patterns and associations between cAMP-induced trophoblast differentiation and LGALS16 expression in JEG-3 cells. The expression of LGALS16 was significantly upregulated in parallel with human chorionic gonadotropin beta (CGB), a biomarker of syncytiotrophoblast differentiation, in response to 8-Br-cAMP. Inhibition of p38 MAPK and EPAC significantly altered LGALS16 expression during differentiation, while PKA inhibition failed to change LGALS16 and CGB3/5 expression in our cell model. The CRISPR/Cas9 LGALS16 knockout cell pool expressed a significantly lower amount of CGB3/5, a reduced level of CGB protein, and an unaltered cell growth rate in response to 8-Br-cAMP in comparison with wild-type JEG-3 cells. Collectively, these findings suggest that LGALS16 is required for the trophoblast-like differentiation of JEG-3 cells, and its expression is mediated through p38 MAPK and EPAC signaling pathway branches.


Asunto(s)
Coriocarcinoma , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Línea Celular Tumoral , Trofoblastos/metabolismo , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Coriocarcinoma/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
14.
Cell Mol Life Sci ; 80(4): 113, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012400

RESUMEN

FGF/FGFR signaling is critical for the development and homeostasis of the human body and imbalanced FGF/FGFR contributes to the progression of severe diseases, including cancers. FGFRs are N-glycosylated, but the role of these modifications is largely unknown. Galectins are extracellular carbohydrate-binding proteins implicated in a plethora of processes in heathy and malignant cells. Here, we identified a precise set of galectins (galectin-1, -3, -7, and -8) that directly interact with N-glycans of FGFRs. We demonstrated that galectins bind N-glycan chains of the membrane-proximal D3 domain of FGFR1 and trigger differential clustering of FGFR1, resulting in activation of the receptor and initiation of downstream signaling cascades. Using engineered galectins with controlled valency, we provide evidence that N-glycosylation-dependent clustering of FGFR1 constitutes a mechanism for FGFR1 stimulation by galectins. We revealed that the consequences of galectin/FGFR signaling for cell physiology are markedly different from the effects induced by canonical FGF/FGFR units, with galectin/FGFR signaling affecting cell viability and metabolic activity. Furthermore, we showed that galectins are capable of activating an FGFR pool inaccessible for FGF1, enhancing the amplitude of transduced signals. Summarizing, our data identify a novel mechanism of FGFR activation, in which the information stored in the N-glycans of FGFRs provides previously unanticipated information about FGFRs' spatial distribution, which is differentially deciphered by distinct multivalent galectins, affecting signal transmission and cell fate.


Asunto(s)
Galectinas , Transducción de Señal , Humanos , Galectinas/metabolismo , Transducción de Señal/fisiología , Fosforilación , Polisacáridos/metabolismo , Glicosilación
15.
Anim Biotechnol ; 35(1): 2344208, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38741260

RESUMEN

Garlic, known for its immune-modulating and antibiotic properties, contains lectins that possess antimicrobial and immunomodulatory effects. Galectins (Gals), which bind ß-galactosides, play a role in modulating immunity and pathological processes. It is hypothesized that garlic's lectin components interfere with animal lectins. St. Croix sheep, known for their resistance to parasites and adaptability, are influenced by dietary supplements for innate immunity. This study evaluated the impact of garlic drench on Galectin gene expression in St. Croix sheep. Adult non-lactating ewes received either garlic juice concentrate or sterile distilled water for four weeks. Blood samples were collected, and plasma and whole blood cells were separated. Galectin secretion was assessed using a Sheep-specific ELISA, while Galectin gene transcription was analyzed through real-time PCR. Garlic administration upregulated LGALS-3 gene expression and significantly increased total plasma protein concentration. Garlic supplementation also affected Galectin secretion, with Gal-1, Gal-3, and Gal-9 showing differential effects.


Asunto(s)
Galectinas , Ajo , Animales , Ajo/química , Galectinas/genética , Galectinas/metabolismo , Ovinos , Femenino , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Alimentación Animal/análisis
16.
J Cell Physiol ; 238(4): 673-686, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745560

RESUMEN

Galectin-3 (Gal-3) previously referred to as S-type lectins, is a soluble protein that specifically binds to ß-galactoside carbohydrates with high specificity. Gal-3 plays a pivotal role in a variety of pathophysiological processes such as cell proliferation, inflammation, differentiation, angiogenesis, transformation and apoptosis, pre-mRNA splicing, metabolic syndromes, fibrosis, and host defense. The role of Gal-3 has also been implicated in liver diseases. Gal-3 is activated upon a hepatotoxic insult to the liver and its level has been shown to be upregulated in fatty liver diseases, inflammation, nonalcoholic steatohepatitis, fibrosis, cholangitis, cirrhosis, and hepatocellular carcinoma (HCC). Gal-3 directly interacts with the NOD-like receptor family, pyrin domain containing 3, and activates the inflammasome in macrophages of the liver. In the chronically injured liver, Gal-3 secreted by injured hepatocytes and immune cells, activates hepatic stellate cells (HSCs) in a paracrine fashion to acquire a myofibroblast like collagen-producing phenotype. Activated HSCs in the fibrotic liver secrete Gal-3 which acts via autocrine signaling to exacerbate extracellular matrix synthesis and fibrogenesis. In the stromal microenvironment, Gal-3 activates cancer cell proliferation, migration, invasiveness, and metastasis. Clinically, increased serum levels and Gal-3 expression were observed in the liver tissue of nonalcoholic steatohepatitis, fibrotic/cirrhotic, and HCC patients. The pathological role of Gal-3 has been experimentally and clinically reported in the progression of chronic liver disease. Therefore, this review discusses the pathological role of Gal-3 in the progression of chronic liver diseases.


Asunto(s)
Galectina 3 , Hígado , Humanos , Fibrosis , Galectina 3/genética , Células Estrelladas Hepáticas/metabolismo , Inflamación/patología , Cirrosis Hepática/patología , Hígado/lesiones , Hígado/patología
17.
Biol Reprod ; 109(6): 799-811, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37672213

RESUMEN

Galectins are a phylogenetically conserved family of soluble ß-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of ß-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.


Asunto(s)
Galectinas , Placenta , Femenino , Embarazo , Humanos , Placenta/metabolismo , Galectinas/química , Galectinas/metabolismo , Galactósidos/química , Galactósidos/metabolismo
18.
Chemistry ; 29(5): e202202208, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36343278

RESUMEN

Fluorine (19 F) incorporation into glycan-binding proteins (lectins) has been achieved and exploited to monitor the binding to carbohydrate ligands by nuclear magnetic resonance (NMR) spectroscopy. Galectins are a family of lectins that bind carbohydrates, generally with weak affinities, through a combination of intermolecular interactions including a key CH-π stacking involving a conserved tryptophan residue. Herein, Galectin-3 (Gal3) and Galectin-8 (Gal8) with one and two carbohydrate recognition domains (CRDs), respectively, were selected. Gal3 contains one Trp, whereas Gal8 contains three, one at each binding site and a third one not involved in sugar binding; these were substituted by the corresponding F-Trp analogues. The presence of fluorine did not significantly modify the affinity for glycan binding, which was in slow exchange on the 19 F NMR chemical-shift timescale, even for weak ligands, and allowed binding events taking place at two different binding sites within the same lectin to be individualized.


Asunto(s)
Flúor , Galectinas , Galectinas/metabolismo , Carbohidratos , Polisacáridos/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Galectina 3/metabolismo
19.
Cell Commun Signal ; 21(1): 122, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231412

RESUMEN

Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute complex signaling hubs that are crucial for the development and homeostasis of the human body. Most of FGFs are released by cells using the conventional secretory pathway and are N-glycosylated, yet the role of FGFs glycosylation is largely unknown. Here, we identify N-glycans of FGFs as binding sites for a specific set of extracellular lectins, galectins - 1, -3, -7 and - 8. We demonstrate that galectins attract N-glycosylated FGF4 to the cell surface, forming a reservoir of the growth factor in the extracellular matrix. Furthermore, we show that distinct galectins differentially modulate FGF4 signaling and FGF4-dependent cellular processes. Using engineered variants of galectins with altered valency we demonstrate that multivalency of galectins is critical for the adjustment of FGF4 activity. Summarizing, our data reveal a novel regulatory module within FGF signaling, in which the glyco-code in FGFs provides previously unanticipated information differentially deciphered by multivalent galectins, affecting signal transduction and cell physiology. Video Abstract.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Galectinas , Humanos , Galectinas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Polisacáridos
20.
Cell Mol Life Sci ; 79(5): 250, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35441327

RESUMEN

Galectin-3, a biomarker for heart failure (HF), has been associated with myocardial fibrosis. However, its causal involvement in HF pathogenesis has been questioned in certain models of cardiac injury-induced HF. To address this, we used desmin-deficient mice (des-/-), a model of progressive HF characterized by cardiomyocyte death, spontaneous inflammatory responses sustaining fibrosis, and galectin-3 overexpression. Genetic ablation or pharmacological inhibition of galectin-3 led to improvement of cardiac function and adverse remodeling features including fibrosis. Over the course of development of des-/- cardiomyopathy, monitored for a period of 12 months, galectin-3 deficiency specifically ameliorated the decline in systolic function accompanying the acute inflammatory phase (4-week-old mice), whereas a more pronounced protective effect was observed in older mice, including the preservation of diastolic function. Interestingly, the cardiac repair activities during the early inflammatory phase were restored under galectin-3 deficiency by increasing the proliferation potential and decreasing apoptosis of fibroblasts, while galectin-3 absence modulated macrophage-fibroblast coupled functions and suppressed both pro-fibrotic activation of cardiac fibroblasts and pro-fibrotic gene expression in the des-/- heart. In addition, galectin-3 also affected the emphysema-like comorbid pathology observed in the des-/- mice, as its absence partially normalized lung compliance. Collectively galectin-3 was found to be causally involved in cardiac adverse remodeling, inflammation, and failure by affecting functions of cardiac fibroblasts and macrophages. In concordance with this role, the effectiveness of pharmacological inhibition in ameliorating cardiac pathology features establishes galectin-3 as a valid intervention target for HF, with additive benefits for treatment of associated comorbidities, such as pulmonary defects. Schematic illustrating top to bottom, the detrimental role of galectin-3 (Gal3) in heart failure progression: desmin deficiency-associated spontaneous myocardial inflammation accompanying cardiac cell death (reddish dashed border) is characterized by infiltration of macrophages (round cells) and up-regulation of Lgals3 (encoding secretable galectin-3, green) and detrimental macrophage-related genes (Ccr2 and Arg1). In this galectin-3-enriched milieu, the early up-regulation of profibrotic gene expression (Tgfb1, Acta2, Col1a1), in parallel to the suppression of proliferative activities and a potential of senescence induction by cardiac fibroblasts (spindle-like cells), collectively promote des-/- cardiac fibrosis and dysfunction establishing heart failure (left panel). Additionally, galectin-3+ macrophage-enrichment accompanies the development of emphysema-like lung comorbidities. In the absence of galectin-3 (right panel), the effect of macrophage-fibroblast dipole and associated events are modulated (grey color depicts reduced expression or activities) leading to attenuated cardiac pathology in the des-/-Lgals3-/- mice. Pulmonary comorbidities are also limited.


Asunto(s)
Cardiomiopatías , Enfisema , Insuficiencia Cardíaca , Animales , Cardiomiopatías/metabolismo , Desmina/metabolismo , Enfisema/metabolismo , Enfisema/patología , Fibrosis , Galectina 3/genética , Galectina 3/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda