Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Geochem Health ; 45(11): 7877-7888, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37493984

RESUMEN

The article presents the assessment of heavy metals mobility in sediments from the process of galvanic wastewater treatment (pH 2.5, Co 1.5 mg/L, Cr6+ < 0.02 mg/L, Cr(total) 62 mg/L, Cu 110 mg/L, Ni 129 mg/L and Pb 59 mg/L) based on the use of hydroxides (Ca(OH)2, NaOH) as well as inorganic and organic sulphur compounds (Na2S, sodium dimethyldithiocarbamate (DMDTC), sodium trithiocarbonate (Na2CS3), trimercapto-s-triazine trisodium salt, TMT). The leachability was assessed after 1, 7, 14 and 21 days of sediment contact with the leaching agent (deionized water). FeCl3 was used as a coagulant. The efficiency of metal removal changed within a range of 99.67-99.94% (for NaOH), 98.80-99.75% (for TMT), 99.67-99.92% (for DMDTC), 99.67-99.91 (for Na2CS3). The heavy metal content in the obtained precipitates changed within the following ranges: 0.1-0.2 g/kg (Co), 9.8-14.7 g/kg (Cr), 23.6-39.8 g/kg (Cu) 30.5-43.2 g/kg (Ni), 24.3-33.1 g/kg (Pb) and 12.2-18.7 g/kg (Cd). The leachability tests revealed the release of 34-37% of Cd, 6.4-7.5% of Ni and 0.06-0.07% of Cu after using an excess of Na2CS3 as the precipitant. The use of NaOH resulted in the release of 0.42-0.46% of Cr from the sediment, and the use of TMT 0.03-0.34% of Ni. The best immobilization of heavy metals was observed in the case of the precipitate resulting from the use of DMDTC as a precipitating agent. The findings may be useful for predicting the mobility of heavy metals in the sludge and assessing the risk involved so as to support their removal and management.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Cadmio , Plomo , Hidróxido de Sodio , Metales Pesados/análisis , Sodio , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
2.
Environ Monit Assess ; 195(4): 442, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869997

RESUMEN

The article presents the results of research on the leachability of selected heavy metals (cadmium, nickel, chromium, cobalt, lead, and copper) from solid waste obtained in laboratory processes involved in the industrial treatment of wastewater generated in metal surface treatment plants. The test sludges were precipitated using sodium hydroxide solution, calcium hydroxide suspension, 45% solution sodium trithiocarbonate (Na2CS3), 15% solution trimercapto-s-triazine, sodium salt (TMT), and 40% solution sodium dimethyldithiocarbamate (DMDTC). The precipitates were treated with artificial acid rain and artificial salt water. After 1, 7, 14, and 21 days of leaching, the concentration of Cd, Co, Cr, Cu, Pb, and Ni in the leachate was determined. Artificial acid rain leached Ni and Cd to a maximum concentration of 724 mg/L and 1821 mg/L, respectively, from the sludge obtained after the application of Na2CS3, while artificial salt water leached Ni in the maximum amount of 466 mg/L and Cd-max. 1320 mg/L. When Ca(OH)2/NaOH was used, the leaching of Cr reached a similar level for both leaching agents, i.e., the maximum for artificial acid rain was 72.2 mg/L and the maximum for artificial salt water 71.8 mg/L. The use of Na2CS3 or Ca(OH)2/NaOH poses a risk of some heavy metals entering the environment, which may have a negative impact on living organisms, whereas the sludges obtained with the use of DMDTC and TMT as precipitants were the most stable under the experimental conditions and did not pose a potential environmental hazard.


Asunto(s)
Lluvia Ácida , Metales Pesados , Cadmio , Hidróxido de Sodio , Monitoreo del Ambiente , Dimetilditiocarbamato , Aguas del Alcantarillado , Agua
3.
Membranes (Basel) ; 13(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36984712

RESUMEN

According to the idea of sustainable development, humanity should make every effort to care for the natural environment along with economic development. Decreasing water resources in the world makes it necessary to take action to reduce the consumption of this resource. This article presents the results of research conducted to improve the use of recyclable materials in line with the circular economy model. The research focused on the development of a technological solution for the recovery of raw materials from galvanic wastewater. The concept of a galvanic wastewater treatment system presented in the article includes wastewater pre-treatment in the ultrafiltration (UF) process and water recovery in the reverse osmosis (RO) process. In addition, the purpose of the work was to manage post-filtration waste (RO retentate) containing high concentrations of zinc in the process of galvanizing metal details. The obtained results indicate that it is possible to reduce the amount of sewage from the galvanizing industry by reusing the recovered water as technical water in the process line. The carried-out model tests of galvanizing confirmed the possibility of using RO retentate for the production of metal parts. The achieved results are a proposal to solve the problem of reducing the impact of galvanic wastewater on the environment and to improve the profitability of existing galvanizing technologies by reducing the consumption of water and raw materials.

4.
Materials (Basel) ; 14(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572588

RESUMEN

The synthesis and application of sodium trithiocarbonate (Na2CS3) for the treatment of real galvanic wastewater in order to remove heavy metals (Cu, Cd and Zn) was investigated. A Central Composite Design/Response Surface Methodology (CCD/RSM) was employed to optimize the removal of heavy metals from industrial wastewater. Adequacy of approximated data was verified using Analysis of Variance (ANOVA). The calculated coefficients of determination (R2 and R2adj) were 0.9119 and 0.8532, respectively. Application of Na2CS3 conjugated with CCD/RSM allowed Cu, Cd and Zn levels to be decreased and, as a consequence, ∑Cu,Cd,Zn decreased by 99.80%, 97.78%, 99.78%, and 99.69%, respectively, by using Na2CS3 at 533 mg/L and pH 9.7, within 23 min. Implementation of conventional metal precipitation reagents (NaOH, Ca(OH)2 and CaO) at pH 11 within 23 min only decreased ∑Cu,Cd,Zn by 90.84%, 93.97% and 93.71%, respectively. Rotifer Brachionus plicatilis was used to conduct the assessment of wastewater toxicity. Following the application of Na2CS3, after 60 min the mortality of B. plicatilis was reduced from 90% to 25%. Engagement of Na2CS3 under optimal conditions caused the precipitation of heavy metals from the polluted wastewater and significantly decreased wastewater toxicity. In summary, Na2CS3 can be used as an effective heavy metal precipitating agent, especially for Cu, Cd and Zn.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda