Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866066

RESUMEN

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Animales , Línea Celular , Células HEK293 , Corazón/fisiología , Humanos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Sodio/metabolismo , Canales de Sodio/química , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/ultraestructura
2.
Proc Natl Acad Sci U S A ; 121(15): e2317769121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564633

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Canales de Sodio Activados por Voltaje , Humanos , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Encéfalo , Mutación
3.
Biochem Biophys Res Commun ; 723: 150175, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-38820625

RESUMEN

BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers. METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc). RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups. CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.


Asunto(s)
Potenciales de Acción , Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/citología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/patología , Calcio/metabolismo , Activación del Canal Iónico , Células Cultivadas , Fenómenos Electrofisiológicos
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34728568

RESUMEN

Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.


Asunto(s)
Trastorno del Espectro Autista/genética , Canales de Potasio KCNQ/genética , Potenciales de Acción , Animales , Cianobacterias , Femenino , Humanos , Técnicas In Vitro , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ3/genética , Masculino , Ratones , Mutación
5.
J Biol Phys ; 49(4): 393-413, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37851173

RESUMEN

The membrane potential of a cell (Vm) regulates several physiological processes. The voltage sensor domain (VSD) is a region that confers voltage sensitivity to different types of transmembrane proteins such as the following: voltage-gated ion channels, the voltage-sensing phosphatase (Ci-VSP), and the sperm-specific Na+/H+ exchanger (sNHE). VSDs contain four transmembrane segments (S1-S4) and several positively charged amino acids in S4, which are essential for the voltage sensitivity of the protein. Generally, in response to changes of the Vm, the positive residues of S4 displace along the plasma membrane without generating ionic currents through this domain. However, some native (e.g., Hv1 channel) and mutants of VSDs produce ionic currents. These gating pore currents are usually observed in VSDs that lack one or more of the conserved positively charged amino acids in S4. The gating pore currents can also be induced by the isolation of a VSD from the rest of the protein domains. In this review, we summarize gating pore currents from all families of proteins with VSDs with classification into three cases: (1) pathological, (2) physiological, and (3) artificial currents. We reinforce the model in which the position of S4 that lacks the positively charged amino acid determines the voltage dependency of the gating pore current of all VSDs independent of protein families.


Asunto(s)
Activación del Canal Iónico , Semen , Masculino , Humanos , Activación del Canal Iónico/fisiología , Dominios Proteicos , Potenciales de la Membrana , Aminoácidos
6.
Europace ; 24(12): 2015-2027, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-35726875

RESUMEN

AIMS: Variants in SCN5A encoding Nav1.5 are associated with cardiac arrhythmias. We aimed to determine the mechanism by which c.638G>A in SCNA5 resulting in p.Gly213Asp (G213D) in Nav1.5 altered Na+ channel function and how flecainide corrected the defect in a family with multifocal ectopic Purkinje-related premature contractions (MEPPC)-like syndrome. METHODS AND RESULTS: Five patients carrying the G213D variant were treated with flecainide. Gating pore currents were evaluated in Xenopus laevis oocytes. The 638G>A SCN5A variant was introduced to human-induced pluripotent stem cell (hiPSC) by CRISPR-Cas9 gene editing and subsequently differentiated to cardiomyocytes (hiPSC-CM). Action potentials and sodium currents were measured in the absence and presence of flecainide. Ca2+ transients were measured by confocal microscopy. The five patients exhibited premature atrial and ventricular contractions which were suppressed by flecainide treatment. G213D induced gating pore current at potentials negative to -50 mV. Voltage-clamp analysis in hiPSC-CM revealed the activation threshold of INa was shifted in the hyperpolarizing direction resulting in a larger INa window current. The G213D hiPSC-CMs had faster beating rates compared with wild-type and frequently showed Ca2+ waves and alternans. Flecainide applied to G213D hiPSC-CMs decreased window current by shifting the steady-state inactivation curve and slowed the beating rate. CONCLUSION: The G213D variant in Nav1.5 induced gating pore currents and increased window current. The changes in INa resulted in a faster beating rate and Ca2+ transient dysfunction. Flecainide decreased window current and inhibited INa, which is likely responsible for the therapeutic effectiveness of flecainide in MEPPC patients carrying the G213D variant.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Potenciales de Acción/fisiología , Arritmias Cardíacas/genética , Flecainida/farmacología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Sodio/metabolismo
7.
J Physiol ; 596(11): 2019-2027, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572832

RESUMEN

Patients suffering from type 1 hypokalaemic periodic paralysis (HypoPP1) experience attacks of muscle paralysis associated with hypokalaemia. The disease arises from missense mutations in the gene encoding the α1 subunit of the dihydropyridine receptor (DHPR), a protein complex anchored in the tubular membrane of skeletal muscle fibres which controls the release of Ca2+ from sarcoplasmic reticulum and also functions as a Ca2+ channel. The vast majority of mutations consist of the replacement of one of the outer arginines in S4 segments of the α1 subunit by neutral residues. Early studies have shown that muscle fibres from HypoPP1 patients are abnormally depolarized at rest in low K+ to the point of inducing muscle inexcitability. The relationship between HypoPP1 mutations and depolarization has long remained unknown. More recent investigations conducted in the closely structurally related voltage-gated Na+ and K+ channels have shown that comparable S4 arginine substitutions gave rise to elevated inward currents at negative potentials called gating pore currents. Experiments performed in muscle fibres from different models revealed such an inward resting current through HypoPP1 mutated Ca2+ channels. In mouse fibres transfected with HypoPP1 mutated channels, the elevated resting current was found to carry H+ for the R1239H arginine-to-histidine mutation in a S4 segment and Na+ for the V876E HypoPP1 mutation, which has the peculiarity of not being located in S4 segments. Muscle paralysis probably results from the presence of a gating pore current associated with hypokalaemia for both mutations, possibly aggravated by external acidosis for the R1239H mutation.


Asunto(s)
Canales de Calcio/fisiología , Cationes Monovalentes/metabolismo , Parálisis Periódica Hipopotasémica/fisiopatología , Activación del Canal Iónico , Músculo Esquelético/fisiología , Animales , Humanos
8.
Handb Exp Pharmacol ; 246: 309-330, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28939973

RESUMEN

The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.


Asunto(s)
Canalopatías/etiología , Enfermedades Musculares/etiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Animales , Humanos , Miotonía/etiología , Miotonía Congénita/etiología , Parálisis Periódica Hiperpotasémica/etiología
9.
Handb Exp Pharmacol ; 246: 371-399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28965172

RESUMEN

Voltage-gated sodium channels belong to the superfamily of voltage-gated cation channels. Their structure is based on domains comprising a voltage sensor domain (S1-S4 segments) and a pore domain (S5-S6 segments). Mutations in positively charged residues of the S4 segments may allow protons or cations to pass directly through the gating pore constriction of the voltage sensor domain; these anomalous currents are referred to as gating pore or omega (ω) currents. In the skeletal muscle disorder hypokalemic periodic paralysis, and in arrhythmic dilated cardiomyopathy, inherited mutations of S4 arginine residues promote omega currents that have been shown to be a contributing factor in the pathogenesis of these sodium channel disorders. Characterization of gating pore currents in these channelopathies and with artificial mutations has been possible by measuring the voltage-dependence and selectivity of these leak currents. The basis of gating pore currents and the structural basis of S4 movement through the gating pore has also been studied extensively with molecular dynamics. These simulations have provided valuable insight into the nature of S4 translocation and the physical basis for the effects of mutations that promote permeation of protons or cations through the gating pore.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Sodio Activados por Voltaje/fisiología , Potenciales de Acción , Animales , Canalopatías/etiología , Humanos , Mutación , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
10.
J Physiol ; 595(20): 6417-6428, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28857175

RESUMEN

KEY POINTS: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . Acute expression of human wild-type and R1239H HypoPP1 mutant α1 subunits in mature mouse muscles showed that R1239H fibres displayed Ca2+ currents of reduced amplitude and larger resting leak inward current increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data suggest that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore and could explain why paralytic attacks preferentially occur during the recovery period following muscle exercise. ABSTRACT: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H hypokalaemic periodic paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hindlimb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant-expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favours onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Parálisis Periódica Hipopotasémica , Fibras Musculares Esqueléticas/fisiología , Animales , Concentración de Iones de Hidrógeno , Masculino , Ratones , Mutación Missense , Técnicas de Placa-Clamp
11.
J Mol Cell Cardiol ; 92: 52-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26801742

RESUMEN

BACKGROUND: Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. METHODS AND RESULTS: We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. CONCLUSIONS: The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism.


Asunto(s)
Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Sistema de Conducción Cardíaco/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada/tratamiento farmacológico , Síndrome de Brugada/fisiopatología , Trastorno del Sistema de Conducción Cardíaco , Humanos , Lactante , Lidocaína/administración & dosificación , Masculino , Potenciales de la Membrana/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp
12.
bioRxiv ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39314455

RESUMEN

Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 µs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our µs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.

13.
Protein Sci ; 33(4): e4965, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501596

RESUMEN

The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.


Asunto(s)
Proteínas de Escherichia coli , Canales Iónicos , Canales Iónicos/genética , Canales Iónicos/química , Canales Iónicos/metabolismo , Activación del Canal Iónico/fisiología , Proteínas de Escherichia coli/química , Constricción
14.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37139703

RESUMEN

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica , Ratones , Humanos , Animales , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Células HEK293 , Mutación/genética , Activación del Canal Iónico , Citosol/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
15.
Front Synaptic Neurosci ; 13: 634760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746731

RESUMEN

This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.

16.
Front Cell Dev Biol ; 9: 635659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732703

RESUMEN

Already for centuries, humankind is driven to understand the physiological and pathological mechanisms that occur in our brains. Today, we know that ion channels play an essential role in the regulation of neural processes and control many functions of the central nervous system. Ion channels present a diverse group of membrane-spanning proteins that allow ions to penetrate the insulating cell membrane upon opening of their channel pores. This regulated ion permeation results in different electrical and chemical signals that are necessary to maintain physiological excitatory and inhibitory processes in the brain. Therefore, it is no surprise that disturbances in the functions of cerebral ion channels can result in a plethora of neurological disorders, which present a tremendous health care burden for our current society. The identification of ion channel-related brain disorders also fuel the research into the roles of ion channel proteins in various brain states. In the last decade, mounting evidence has been collected that indicates a pivotal role for transient receptor potential (TRP) ion channels in the development and various physiological functions of the central nervous system. For instance, TRP channels modulate neurite growth, synaptic plasticity and integration, and are required for neuronal survival. Moreover, TRP channels are involved in numerous neurological disorders. TRPM3 belongs to the melastatin subfamily of TRP channels and represents a non-selective cation channel that can be activated by several different stimuli, including the neurosteroid pregnenolone sulfate, osmotic pressures and heat. The channel is best known as a peripheral nociceptive ion channel that participates in heat sensation. However, recent research identifies TRPM3 as an emerging new player in the brain. In this review, we summarize the available data regarding the roles of TRPM3 in the brain, and correlate these data with the neuropathological processes in which this ion channel may be involved.

17.
Brain Commun ; 2(2): fcaa103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005891

RESUMEN

Familial hypokalaemic periodic paralysis is a rare skeletal muscle disease caused by the dysregulation of sarcolemmal excitability. Hypokalaemic periodic paralysis is characterized by repeated episodes of paralytic attacks with hypokalaemia, and several variants in CACNA1S coding for CaV1.1 and SCN4A coding for NaV1.4 have been established as causative mutations. Most of the mutations are substitutions to a non-charged residue, from the positively charged arginine (R) in transmembrane segment 4 (S4) of a voltage sensor in either CaV1.1 or NaV1.4. Mutant channels have aberrant leak currents called 'gating pore currents', and the widely accepted consensus is that this current is the essential pathological mechanism that produces susceptibility to anomalous depolarization and failure of muscle excitability during a paralytic attack. Here, we have identified five hypokalaemic periodic paralysis cases from two different ethnic backgrounds, Japanese and French, with charge-preserving substitutions in S4 from arginine, R, to lysine, K. An R to K substitution has not previously been reported for any other hypokalaemic periodic paralysis families. One case is R219K in NaV1.4, which is located at the first charge in S4 of Domain I. The other four cases all have R897K in CaV1.1, which is located at the first charge in S4 of Domain III. Gating pore currents were not detected in expression studies of CaV1.1-R897K. NaV1.4-R219K mutant channels revealed a distinct, but small, gating pore current. Simulation studies indicated that the small-amplitude gating pore current conducted by NaV1.4-R219K is not likely to be sufficient to be a risk factor for depolarization-induced paralytic attacks. Our rare cases with typical hypokalaemic periodic paralysis phenotypes do not fit the canonical view that the essential defect in hypokalaemic periodic paralysis mutant channels is the gating pore current and raise the possibility that hypokalaemic periodic paralysis pathogenesis might be heterogeneous and diverse.

18.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165959, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916281

RESUMEN

The voltage-gated sodium channel Nav1.6 is associated with more than 300 cases of epileptic encephalopathy. Nav1.6 epilepsy-causing mutations are spread over the entire channel's structure and only 10% of mutations have been characterized at the molecular level, with most of them being gain of function mutations. In this study, we analyzed three previously uncharacterized Nav1.6 epilepsy-causing mutations: G214D, N215D and V216D, located within a mutation hot-spot at the S3-S4 extracellular loop of Domain1. Voltage clamp experiments showed a 6-16 mV hyperpolarizing shift in the activation mid-point for all three mutants. V216D presented the largest shift along with decreased current amplitude, enhanced inactivation and a lack of persistent current. Recordings at hyperpolarized potentials indicated that all three mutants presented gating pore currents. Furthermore, trafficking experiments performed in cultured hippocampal neurons demonstrated that the mutants trafficked properly to the cell surface, with no significant differences regarding surface expression within the axon initial segment or soma compared to wild-type. These trafficking data suggest that the disease-causing consequences are due to only changes in the biophysical properties of the channel. Interestingly, the patient carrying the V216D mutation, which is the mutant with the greatest electrophysiological changes as compared to wild-type, exhibited the most severe phenotype. These results emphasize that these mutations will mandate unique treatment approaches, for normal sodium channel blockers may not work given that the studied mutations present gating pore currents. This study emphasizes the importance of molecular characterization of disease-causing mutations in order to improve the pharmacological treatment of patients.


Asunto(s)
Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Espasmos Infantiles/genética , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Fenotipo , Ratas
19.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31558572

RESUMEN

Over 150 mutations in the SCN2A gene, which encodes the neuronal Nav1.2 protein, have been implicated in human epilepsy cases. Of these, R1882Q and R853Q are two of the most commonly reported mutations. This study utilized voltage-clamp electrophysiology to characterize the biophysical effects of the R1882Q and R853Q mutations on the hNav1.2 channel, including their effects on resurgent current and gating pore current, which are not typically investigated in the study of Nav1.2 channel mutations. HEK cells transiently transfected with DNA encoding either wild-type (WT) or mutant hNav1.2 revealed that the R1882Q mutation induced a gain-of-function phenotype, including slowed fast inactivation, depolarization of the voltage dependence of inactivation, and increased persistent current. In this model system, the R853Q mutation primarily produced loss-of-function effects, including reduced transient current amplitude and density, hyperpolarization of the voltage dependence of inactivation, and decreased persistent current. The presence of a Navß4 peptide (KKLITFILKKTREK-OH) in the pipette solution induced resurgent currents, which were increased by the R1882Q mutation and decreased by the R853Q mutation. Further study of the R853Q mutation in Xenopus oocytes indicated a reduced surface expression and revealed a robust gating pore current at negative membrane potentials, a function absent in the WT channel. This not only shows that different epileptogenic point mutations in hNav1.2 have distinct biophysical effects on the channel, but also illustrates that individual mutations can have complex consequences that are difficult to identify using conventional analyses. Distinct mutations may, therefore, require tailored pharmacotherapies in order to eliminate seizures.


Asunto(s)
Epilepsia/genética , Activación del Canal Iónico/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Potenciales de Acción/genética , Animales , Células HEK293 , Humanos , Mutación Puntual/genética , Xenopus laevis
20.
Front Cardiovasc Med ; 5: 139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356750

RESUMEN

Voltage gated sodium channels (NaV) are broadly expressed in the human body. They are responsible for the initiation of action potentials in excitable cells. They also underlie several physiological processes such as cognitive, sensitive, motor, and cardiac functions. The NaV1.5 channel is the main NaV expressed in the heart. A dysfunction of this channel is usually associated with the development of pure electrical disorders such as long QT syndrome, Brugada syndrome, sinus node dysfunction, atrial fibrillation, and cardiac conduction disorders. However, mutations of Nav1.5 have recently been linked to the development of an atypical clinical entity combining complex arrhythmias and dilated cardiomyopathy. Although several Nav1.5 mutations have been linked to dilated cardiomyopathy phenotypes, their pathogenic mechanisms remain to be elucidated. The gating pore may constitute a common biophysical defect for all NaV1.5 mutations located in the channel's VSDs. The creation of such a gating pore may disrupt the ionic homeostasis of cardiomyocytes, affecting electrical signals, cell morphology, and cardiac myocyte function. The main objective of this article is to review the concept of gating pores and their role in structural heart diseases and to discuss potential pharmacological treatments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda