Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Genes Dev ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054057

RESUMEN

Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.

2.
Mol Cell ; 83(1): 26-42.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608667

RESUMEN

Human cells license tens of thousands of origins of replication in G1 and then must stop all licensing before DNA synthesis in S phase to prevent re-replication and genome instability that ensue when an origin is licensed on replicated DNA. However, the E3 ubiquitin ligase CRL4Cdt2 only starts to degrade the licensing factor CDT1 after origin firing, raising the question of how cells prevent re-replication before CDT1 is fully degraded. Here, using quantitative microscopy and in-vitro-reconstituted human DNA replication, we show that CDT1 inhibits DNA synthesis during an overlap period when CDT1 is still present after origin firing. CDT1 inhibits DNA synthesis by suppressing CMG helicase at replication forks, and DNA synthesis commences once CDT1 is degraded. Thus, in contrast to the prevailing model that human cells prevent re-replication by strictly separating licensing from firing, licensing and firing overlap, and cells instead separate licensing from DNA synthesis.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Humanos , Fase S , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo
3.
Mol Cell ; 83(7): 1165-1179.e11, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944332

RESUMEN

SF3B1 is the most mutated splicing factor (SF) in myelodysplastic syndromes (MDSs), which are clonal hematopoietic disorders with variable risk of leukemic transformation. Although tumorigenic SF3B1 mutations have been extensively characterized, the role of "non-mutated" wild-type SF3B1 in cancer remains largely unresolved. Here, we identify a conserved epitranscriptomic program that steers SF3B1 levels to counteract leukemogenesis. Our analysis of human and murine pre-leukemic MDS cells reveals dynamic regulation of SF3B1 protein abundance, which affects MDS-to-leukemia progression in vivo. Mechanistically, ALKBH5-driven 5' UTR m6A demethylation fine-tunes SF3B1 translation directing splicing of central DNA repair and epigenetic regulators during transformation. This impacts genome stability and leukemia progression in vivo, supporting an integrative analysis in humans that SF3B1 molecular signatures may predict mutational variability and poor prognosis. These findings highlight a post-transcriptional gene expression nexus that unveils unanticipated SF3B1-dependent cancer vulnerabilities.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , Carcinogénesis/genética , Leucemia/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
4.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932350

RESUMEN

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Asunto(s)
ADN Polimerasa II/química , Exonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886582

RESUMEN

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Citidina Desaminasa , Daño del ADN , Replicación del ADN , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Inestabilidad Genómica , Línea Celular Tumoral , Proteínas
6.
Genes Dev ; 34(5-6): 285-301, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32029453

RESUMEN

Effective maintenance and stability of our genomes is essential for normal cell division, tissue homeostasis, and cellular and organismal fitness. The processes of chromosome replication and segregation require continual surveillance to insure fidelity. Accurate and efficient repair of DNA damage preserves genome integrity, which if lost can lead to multiple diseases, including cancer. Poly(ADP-ribose) a dynamic and reversible posttranslational modification and the enzymes that catalyze it (PARP1, PARP2, tankyrase 1, and tankyrase 2) function to maintain genome stability through diverse mechanisms. Here we review the role of these enzymes and the modification in genome repair, replication, and resolution in human cells.


Asunto(s)
Núcleo Celular/enzimología , Inestabilidad Genómica/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sitios de Unión , Reparación del ADN , Replicación del ADN , Humanos , Relación Estructura-Actividad
7.
Mol Cell ; 74(5): 1069-1085.e11, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000436

RESUMEN

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.


Asunto(s)
Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética , Meiosis/genética , Animales , Proteínas Portadoras/química , Segregación Cromosómica/genética , Masculino , Ratones , Regiones Pseudoautosómicas/genética , Espermatocitos/crecimiento & desarrollo , Espermatocitos/metabolismo , Cromosoma X/genética , Cromosoma Y/genética
8.
J Cell Sci ; 137(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38482739

RESUMEN

CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central ß-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Unión Proteica , Metabolismo de los Lípidos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , ADN de Hongos/metabolismo , ADN de Hongos/genética
9.
Semin Cell Dev Biol ; 135: 59-72, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35331626

RESUMEN

Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Genoma , Procesamiento Proteico-Postraduccional/genética , ADN/genética
10.
Biol Cell ; 116(5): e2300128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538536

RESUMEN

BACKGROUND INFORMATION: The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme. RESULTS: The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner. CONCLUSIONS AND SIGNIFICANCE: Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.


Asunto(s)
Daño del ADN , Fosfatasa 3 de Especificidad Dual , Ribonucleoproteína Heterogénea-Nuclear Grupo C , ARN Mensajero , Humanos , Fosfatasa 3 de Especificidad Dual/metabolismo , Fosfatasa 3 de Especificidad Dual/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo
11.
Mol Cell ; 68(4): 758-772.e4, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29129641

RESUMEN

Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Cohesinas
12.
J Biol Chem ; 299(5): 104705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059180

RESUMEN

The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses both inherited and sporadic cancers in humans. In eukaryotes, the MutSα-dependent and MutSß-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole genome level in Saccharomyces cerevisiae. We found that inactivation of MutSα-dependent MMR increases the genome-wide mutation rate by ∼17-fold and loss of MutSß-dependent MMR elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSß-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1- to 6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSß-dependent MMR for protection from 1-bp insertions, while MutSß-dependent MMR has a more critical role in the defense against 1-bp deletions and 2- to 6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSß-dependent MMR pathways.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
13.
Plant J ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37680033

RESUMEN

Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.

14.
Biol Reprod ; 110(1): 48-62, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37812443

RESUMEN

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.


Asunto(s)
Acetatos , Fenoles , Proteínas de Unión al ARN , Espermatogonias , Animales , Masculino , Ratones , Daño del ADN , Reparación del ADN , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción/genética
15.
Biochem Soc Trans ; 52(2): 639-650, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38506536

RESUMEN

Pluripotent stem cells (PSCs), comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), offer immense potential for regenerative medicine due to their ability to differentiate into all cell types of the adult body. A critical aspect of harnessing this potential is understanding their metabolic requirements during derivation, maintenance, and differentiation in vitro. Traditional culture methods using fetal bovine serum often lead to issues such as heterogeneous cell populations and diminished pluripotency. Although the chemically-defined 2i/LIF medium has provided solutions to some of these challenges, prolonged culturing of these cells, especially female ESCs, raises concerns related to genome integrity. This review discusses the pivotal role of lipids in genome stability and pluripotency of stem cells. Notably, the introduction of lipid-rich albumin, AlbuMAX, into the 2i/LIF culture medium offers a promising avenue for enhancing the genomic stability and pluripotency of cultured ESCs. We further explore the unique characteristics of lipid-induced pluripotent stem cells (LIP-ESCs), emphasizing their potential in regenerative medicine and pluripotency research.


Asunto(s)
Inestabilidad Genómica , Lípidos , Humanos , Animales , Lípidos/química , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Metabolismo de los Lípidos
16.
Biochem Soc Trans ; 52(2): 773-792, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629643

RESUMEN

The preservation of genome integrity requires specialised DNA damage repair (DDR) signalling pathways to respond to each type of DNA damage. A key feature of DDR is the integration of numerous post-translational modification signals with DNA repair factors. These modifications influence DDR factor recruitment to damaged DNA, activity, protein-protein interactions, and ultimately eviction to enable access for subsequent repair factors or termination of DDR signalling. SUMO1-3 (small ubiquitin-like modifier 1-3) conjugation has gained much recent attention. The SUMO-modified proteome is enriched with DNA repair factors. Here we provide a snapshot of our current understanding of how SUMO signalling impacts the major DNA repair pathways in mammalian cells. We highlight repeating themes of SUMO signalling used throughout DNA repair pathways including the assembly of protein complexes, competition with ubiquitin to promote DDR factor stability and ubiquitin-dependent degradation or extraction of SUMOylated DDR factors. As SUMO 'addiction' in cancer cells is protective to genomic integrity, targeting components of the SUMO machinery to potentiate DNA damaging therapy or exacerbate existing DNA repair defects is a promising area of study.


Asunto(s)
Daño del ADN , Reparación del ADN , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo
17.
Electrophoresis ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488707

RESUMEN

Recombinant adeno-associated virus (rAAV) is the leading platform of gene delivery for its long-lasting gene transformation and low immunogenicity. Characterization of the integrity and purity of the rAAV genome is critical to ensure clinical potency and safety. However, current rAAV genome characterization methods that can provide size assessment are either time-consuming or not easily accessible to general labs. Additionally, there is a lack of right reference standard for analyzing long single-stranded DNA (ssDNA) fragments. Here, we have developed an ssDNA assay on a microfluidic capillary electrophoresis platform using ssDNA reference standard. This assay provides size calling for ssDNA fragment, a detection sensitivity at ∼89 pg/µL (3 × 1010  GC/mL AAV) for 5.1 kb ssDNA fragment, and a turnaround time at ∼100 s per sample with a high throughput sample analyzing capability. Moreover, we have observed that the annealing of AAV ssDNA subsequent to its release from the capsid might introduce an additional double-stranded DNA (dsDNA) peak. This phenomenon is dependent on the sample processing workflow. To avoid the risk of mischaracterization, we recommend the use of dual-reference standards in combination with other orthogonal methods to have a comprehensive understanding of the rAAV genome size and integrity.

18.
Extremophiles ; 28(3): 31, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020126

RESUMEN

The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.


Asunto(s)
Adaptación Fisiológica , Anoxybacillus , Proteínas Bacterianas , Anoxybacillus/metabolismo , Anoxybacillus/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Frío , Biopelículas/crecimiento & desarrollo
19.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966248

RESUMEN

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Asunto(s)
Intercambio Genético/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/genética
20.
J Bacteriol ; 205(12): e0027223, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38018999

RESUMEN

In this issue of the Journal of Bacteriology, N. J. Bonde, E. A. Wood, K. S. Myers, M. Place, J. L. Keck, and M. M. Cox (J Bacteriol 205:e00184-23, 2023, https//doi.org/10.1128/jb.00184-23) used an unbiased transposon-sequencing (Tn-seq) screen to identify proteins required for life when cells lose the RecG branched-DNA helicase (synthetic lethality). The proteins' identities indicate pathways that prevent endogenous DNA damage, pathways that prevent its homology-directed repair (HDR) "strand-exchange" intermediates between sister chromosomes, and pathways that resolve those intermediates. All avoid intermediate pile-up, which blocks chromosome segregation, causing "death-by-recombination." DNA damage is managed to regulate crucial but potentially lethal HDR.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Reparación del ADN , Recombinación Genética , ADN Helicasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda