Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Plant J ; 116(1): 187-200, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366635

RESUMEN

Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway, which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5. REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx, respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid content in ref2, but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Triptófano/metabolismo , Oximas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Desarrollo de la Planta , Metionina/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 114(5): 1115-1131, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095649

RESUMEN

Plants developed sophisticated mechanisms to perceive environmental stimuli and generate appropriate signals to maintain optimal growth and stress responses. A fascinating strategy employed by plants is the use of long-distance mobile signals which can trigger local and distant responses across the entire plant. Some metabolites play a central role as long-distance mobile signals allowing plants to communicate across tissues and mount robust stress responses. In this review, we summarize the current knowledge regarding the various long-distance mobile metabolites and their functions in stress response and signaling pathways. We also raise questions with respect to how we can identify new mobile metabolites and engineer them to improve plant health and resilience.


Asunto(s)
Plantas , Transducción de Señal , Transducción de Señal/fisiología , Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693493

RESUMEN

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Asunto(s)
Acetatos , Glucosinolatos , Glicósido Hidrolasas , Glucosinolatos/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
4.
New Phytol ; 243(5): 1951-1965, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38553428

RESUMEN

Here, we characterized the independent role of soil microbiomes (bacterial and fungal communities) in determining the flavor chemistry of harvested mustard seed (Brassica juncea). Given the known impacts of soil microbial communities on various plant characteristics, we hypothesized that differences in rhizosphere microbiomes would result in differences in seed flavor chemistry (glucosinolate content). In a glasshouse study, we introduced distinct soil microbial communities to mustard plants growing in an otherwise consistent environment. At the end of the plant life cycle, we characterized the rhizosphere and root microbiomes and harvested produced mustard seeds for chemical characterization. Specifically, we measured the concentrations of glucosinolates, secondary metabolites known to create spicy and bitter flavors. We examined associations between rhizosphere microbial taxa or genes and seed flavor chemistry. We identified links between the rhizosphere microbial community composition and the concentration of the main glucosinolate, allyl, in seeds. We further identified specific rhizosphere taxa predictive of seed allyl concentration and identified bacterial functional genes, namely genes for sulfur metabolism, which could partly explain the observed associations. Together, this work offers insight into the potential influence of the belowground microbiome on the flavor of harvested crops.


Asunto(s)
Glucosinolatos , Microbiota , Planta de la Mostaza , Rizosfera , Semillas , Microbiología del Suelo , Planta de la Mostaza/microbiología , Glucosinolatos/metabolismo , Glucosinolatos/análisis , Semillas/microbiología , Raíces de Plantas/microbiología , Aromatizantes/análisis , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Gusto
5.
J Exp Bot ; 75(1): 300-315, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738614

RESUMEN

Aliphatic glucosinolates are a large group of plant secondary metabolites characteristic of Brassicaceae, including the model plant Arabidopsis. The diverse and complex degradation products of aliphatic glucosinolates contribute to plant responses to herbivory, pathogen attack, and environmental stresses. Most of the biosynthesis genes in the aliphatic glucosinolate pathway have been cloned in Arabidopsis, and the research focus has recently shifted to the regulatory mechanisms controlling aliphatic glucosinolate accumulation. Up till now, more than 40 transcriptional regulators have been identified as regulating the aliphatic glucosinolate pathway, but many more novel regulators likely remain to be discovered based on research evidence over the past decade. In the current study, we took a systemic approach to functionally test 155 candidate transcription factors in Arabidopsis identified by yeast one-hybrid assay, and successfully validated at least 30 novel regulators that could significantly influence the accumulation of aliphatic glucosinolates in our experimental set-up. We also showed that the regulators of the aliphatic glucosinolate pathway have balanced positive and negative effects, and glucosinolate metabolism and plant development can be coordinated. Our work is the largest scale effort so far to validate transcriptional regulators of a plant secondary metabolism pathway, and provides new insights into how the highly diverse plant secondary metabolism is regulated at the transcriptional level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Exp Bot ; 75(3): 1036-1050, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37831920

RESUMEN

Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Aniones/metabolismo , Sulfatos/metabolismo , Glutatión/metabolismo , Azufre/metabolismo , Fosfatos/metabolismo , Glucosinolatos , Regulación de la Expresión Génica de las Plantas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38114856

RESUMEN

In this paper, we take a historical perspective by going back to Verschaffelt's landmark study published in 1910, in which he found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the family Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466-1470, 1959) to elaborate on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586-608, 1964) to put forward the hypothesis of insect-plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elucidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution of labeled-line neurons tuned to token stimuli.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Glucosinolatos , Insectos , Larva
8.
BMC Biol ; 21(1): 249, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940940

RESUMEN

BACKGROUND: Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS: Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS: Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS: Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triptófano/genética , Triptófano/metabolismo , Triptófano/farmacología , Fotosíntesis , ARN Mensajero/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791354

RESUMEN

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Unión al ARN , Factores de Transcripción , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Redes Reguladoras de Genes , Plantas Modificadas Genéticamente
10.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255773

RESUMEN

The organic sulfur-containing compounds glucosinolates (GSLs) and the novel gasotransmitter H2S are known to have cardioprotective effects. This study investigated the antioxidant effects and H2S-releasing potential of three GSLs ((3E)-4-(methylsulfanyl)but-3-enyl GSL or glucoraphasatin, 4-hydroxybenzyl GSL or glucosinalbin, and (RS)-6-(methylsulfinyl)hexyl GSL or glucohesperin) in rat cardiac cells. It was found that all three GSLs had no effect on cardiac cell viability but were able to protect against H2O2-induced oxidative stress and cell death. NaHS, a H2S donor, also protected the cells from H2O2-stimulated oxidative stress and cell death. The GSLs alone or mixed with cysteine, N-acetylcysteine, glutathione, H2O2, iron and pyridoxal-5'-phosphate, or mouse liver lysates did not induce H2S release. The addition of GSLs also did not alter endogenous H2S levels in cardiac cells. H2O2 significantly induced cysteine oxidation in the cystathionine gamma-lyase (CSE) protein and inhibited the H2S production rate. In conclusion, this study found that the three tested GSLs protect cardiomyocytes from oxidative stress and cell death but independently of H2S signaling.


Asunto(s)
Antioxidantes , Glucosinolatos , Ratones , Animales , Ratas , Antioxidantes/farmacología , Glucosinolatos/farmacología , Peróxido de Hidrógeno , Miocitos Cardíacos , Acetilcisteína , Fosfato de Piridoxal
11.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255874

RESUMEN

Inflammatory diseases are strongly associated with global morbidity and mortality. Several mediators are involved in this process, including proinflammatory interleukins and cytokines produced by damaged tissues that, somehow, act as initiators of the autoreactive immune response. Bioactive compounds present in plant-based foods and byproducts have been largely considered active agents with the potential to treat or prevent inflammatory diseases, being a valuable alternative to traditional therapeutic agents used nowadays, which present several side effects. In this regard, the present research uncovers the anti-inflammatory activity of the bioaccessible fraction of broccoli stalks processed, by applying different conditions that render specific concentrations of bioactive sulforaphane (SFN). The raw materials' extracts exhibited significantly different contents of total glucosinolates (GSLs) that ranged between 3993.29 and 12,296.48 mg/kg dry weight (dw), with glucoraphanin as the most abundant one, followed by GI and GE. The indolic GSLs were represented by hydroxy-glucobrassicin, glucobrassicin, methoxy-glucobrassicin, and neo-glucobrassicin, with the two latter as the most abundant. Additionally, SFN and indole-3-carbinol were found in lower concentrations than the corresponding GSL precursors in the raw materials. When exploring the bioaccessibility of these organosulfur compounds, the GSL of all matrices remained at levels lower than the limit of detection, while SFN was the only breakdown product that remained stable and at quantifiable concentrations. The highest concentration of bioaccessible SFN was provided by the high-ITC materials (~4.00 mg/kg dw). The results retrieved on the cytotoxicity of the referred extracts evidenced that the range of supplementation of growth media tested (0.002-430.400 µg of organosulfur compounds/mL) did not display cytotoxic effects on Caco-2 cells. The obtained extracts were assessed based on their capacity to reduce the production of key proinflammatory cytokines (interleukin 6 (IL-6), IL-8, and TNF-α) by the intestinal epithelium. Most of the tested processing conditions provided plant material with significant anti-inflammatory activity and the absence of cytotoxic effects. These data confirm that SFN from broccoli stalks, processed to optimize the bioaccessible concentration of SFN, may be potential therapeutic leads to treat or prevent human intestinal inflammation.


Asunto(s)
Brassica , Glucosinolatos , Indoles , Enfermedades Inflamatorias del Intestino , Isotiocianatos , Sulfóxidos , Humanos , Células CACO-2 , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Citocinas , Mediadores de Inflamación , Antiinflamatorios/farmacología
12.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612635

RESUMEN

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Asunto(s)
Aductos de ADN , Glucosinolatos , Ratones , Humanos , Animales , Ratas , Ratones Noqueados , Cromatografía Liquida , Espectrometría de Masas en Tándem , Arilsulfotransferasa/genética
13.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063186

RESUMEN

The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.


Asunto(s)
Antifúngicos , Botrytis , Brassica , Glucosinolatos , Botrytis/efectos de los fármacos , Glucosinolatos/química , Glucosinolatos/farmacología , Glucosinolatos/metabolismo , Brassica/microbiología , Hidrólisis , Antifúngicos/farmacología , Antifúngicos/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana
14.
Toxicol Mech Methods ; : 1-15, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38919011

RESUMEN

Malignant melanoma is the most aggressive type of skin cancer with increasing incidence rates worldwide. On the other hand, watercress is a rich source of phenethyl isothiocyanate (PEITC), among others, which has been widely investigated for its anticancer properties against various cancers. In the present study, we evaluated the role of a watercress extract in modulating apoptotic induction in an in vitro model of human malignant melanoma consisting of melanoma (A375, COLO-679, COLO-800), non-melanoma epidermoid carcinoma (A431) and immortalized, non-tumorigenic keratinocyte (HaCaT) cells. Moreover, the chemical composition of the watercress extract was characterized through UPLC MS/MS and other analytical methodologies. In addition, cytotoxicity was assessed by the alamar blue assay whereas apoptosis was determined, initially, by a multiplex activity assay kit (measuring levels of activated caspases -3, -8 and -9) as well as by qRT-PCR for the identification of major genes regulating apoptosis. In addition, protein expression levels were evaluated by western immunoblotting. Our data indicate that the extract contains various phytochemicals (e.g. phenolics, flavonoids, pigments, etc.) while isothiocyanates (ITCs; especially PEITC) were the most abundant. In addition, the extract was shown to exert a significant time- and dose-dependent cytotoxicity against all malignant melanoma cell lines while non-melanoma and non-tumorigenic cells exhibited significant resistance. Finally, expression profiling revealed a number of genes (and corresponding proteins) being implicated in regulating apoptotic induction through activation of the intrinsic apoptotic cascade. Overall, our data indicate the potential of PEITC as a promising anti-cancer agent in the clinical management of human malignant melanoma.

15.
Proteins ; 91(9): 1351-1360, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37163477

RESUMEN

Protein glycation can result in the formation of advanced glycation end products (AGEs), which pose a potential health risk due to their association with diabetic complications. Natural products are a source of drugs discovery and the search for potential natural inhibitors of AGEs is of great significance. Glucosinolates (GSLs) mainly from cruciferous plants have potential antioxidant, anti-inflammatory, and anti-glycation activities. In this study, the inhibitory activity of GSLs on bovine serum albumin (BSA) along with its mechanism was investigated by virtual screening and various computational simulation techniques. Virtual screening revealed that 174 GSLs were screened using Maestro based on the glide score and 89% of the compounds were found to have potential anti-glycation ability with the docking scores less than -5 kcal/mol. Molecular docking showed that the top 10 GSLs were bound to the IIA structural domain of BSA. Among them, glucohesperin (1) and 2-hydroxyethyl glucosinolate (2) had the lowest docking scores of -9.428 and -9.333 kcal/mol, respectively, reflecting their good binding affinity. Molecular dynamics simulations of 1 (ΔG = -43.46 kcal/mol) and 2 (ΔG = -43.71 kcal/mol) revealed that the complexes of these two compounds with proteins had good stability. Further binding site analysis suggested that the mechanism of inhibition of protein glycation by these two active ingredients might be through competitive hydrogen bonding to maintain the structural integrity of the protein, thus inhibiting glycation reaction. Moreover, the ADMET values and CYP450 metabolism prediction data were within the recommended values. Therefore, it can be concluded that 1 and 2 may act as potential anti-glycation agents.


Asunto(s)
Glucosinolatos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Agentes Antiglicación , Productos Finales de Glicación Avanzada
16.
Plant Cell Physiol ; 64(1): 80-93, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36222356

RESUMEN

Glucosinolates are specialized defensive metabolites characteristic of the Brassicales order. Among them, aliphatic and indolic glucosinolates (IGs) are usually highly abundant in species from the Brassicaceae family. The exceptions this trend are species representing a subclade of the Camelineae tribe, including Capsella and Camelina genera, which have reduced capacity to produce and metabolize IGs. Our study addresses the contribution of specific glucosinolate-related myeloblastosis (MYB) transcription factors to this unprecedented backward evolution of IG biosynthesis. To this end, we performed phylogenomic and functional studies of respective MYB proteins. The obtained results revealed weakened conservation of glucosinolate-related MYB transcription factors, including loss of functional MYB34 protein, in the investigated species. We showed that the introduction of functional MYB34 from Arabidopsis thaliana partially restores IG biosynthesis in Capsella rubella, indicating that the loss of this transcription factor contributes to the backward evolution of this metabolic pathway. Finally, we performed an analysis of the impact of particular myb mutations on the feedback loop in IG biosynthesis, which drives auxin overproduction, metabolic dysregulation and strong growth retardation caused by mutations in IG biosynthetic genes. This uncovered the unique function of MYB34 among IG-related MYBs in this feedback regulation and consequently in IG conservation in Brassicaceae plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/metabolismo , Indoles/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
BMC Plant Biol ; 23(1): 515, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880578

RESUMEN

BACKGROUND: In the search for new alternatives to avoid the problems associated with the use of synthetic chemical fungicides in agriculture, the use of green manure (GrM) could help combat fungal diseases of crops, such as those produced by the necrotrophic pathogen Rhizoctonia solani. In the case of the use of Brassica tissues as GrM, it could have an elicitor capacity for systemic plant resistance. RESULTS: We used kale leaves as a GrM and applied it to pepper plants infected with R. solani. The application of freeze-dried kale tissues to the roots of pepper plants produced a systemic activation of foliar defences via the salicylic acid (SA) and ethylene (ET) pathways, significantly reducing pathogen damage. In addition, this systemic response led to the accumulation of secondary defence metabolites, such as pipecolic acid, hydroxycoumarin and gluconic acid, in leaves. Remarkably, pepper plants treated with lyophilised kale GrM accumulated glucosinolates when infected with R. solani. We also confirmed that autoclaving removed part of the glucobrassicin (85%) and sinigrin (19%) content of the kale tissues. CONCLUSIONS: GrM kale tissues can activate systemic defences in bell pepper against foliar pathogens through SA/ET hormonal pathways, accumulating secondary defence metabolites.


Asunto(s)
Brassica , Capsicum , Brassica/metabolismo , Estiércol , Rhizoctonia
18.
Mol Ecol ; 32(3): 741-751, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373270

RESUMEN

The rhizosphere microbiome influences many aspects of plant fitness, including production of secondary compounds and defence against insect herbivores. Plants also modulate the composition of the microbial community in the rhizosphere via secretion of root exudates. We tested both the effect of the rhizosphere microbiome on plant traits, and host plant effects on rhizosphere microbes using recombinant inbred lines (RILs) of Brassica rapa that differ in production of glucosinolates (GLS), secondary metabolites that contribute to defence against insect herbivores. First, we investigated the effect of genetic variation in GLS production on the composition of the rhizosphere microbiome. Using a Bayesian Dirichlet-multinomial regression model (DMBVS), we identified both negative and positive associations between bacteria from six genera and the concentration of five GLS compounds produced in plant roots. Additionally, we tested the effects of microbial inoculation (an intact vs. disrupted soil microbiome) on GLS production and insect damage in these RILs. We found a significant microbial treatment × genotype interaction, in which total GLS was higher in the intact relative to the disrupted microbiome treatment in some RILs. However, despite differences in GLS production between microbial treatments, we observed no difference in insect damage between treatments. Together, these results provide evidence for a full feedback cycle of plant-microbe interactions mediated by GLS; that is, GLS compounds produced by the host plant "feed-down" to influence rhizosphere microbial community and rhizosphere microbes "feed-up" to influence GLS production.


Asunto(s)
Brassica rapa , Microbiota , Microbiología del Suelo , Glucosinolatos , Rizosfera , Retroalimentación , Teorema de Bayes , Raíces de Plantas/microbiología , Plantas/microbiología , Microbiota/genética
19.
Plant Cell Environ ; 46(10): 2964-2984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36207995

RESUMEN

Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.


Asunto(s)
Glucosinolatos , Desarrollo de la Planta , Glucosinolatos/metabolismo , Plantas/metabolismo
20.
J Exp Bot ; 74(15): 4559-4578, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37147850

RESUMEN

Studying intraspecific variation in multistress responses is central for predicting and managing the population dynamics of wild plant species under rapid global change. Yet, it remains a challenging goal in this field to integrate knowledge on the complex biochemical underpinnings for the targeted 'non-model' species. Here, we studied divergence in combined drought and heat responses among Northern and Southern European populations of the dune plant Cakile maritima, by combining comprehensive plant phenotyping with metabolic profiling via FT-ICR-MS and UPLC-TQ-MS/MS. We observed pronounced constitutive divergence in growth phenology, leaf functional traits, and defence chemistry (glucosinolates and alkaloids) among population origins. Most importantly, the magnitude of growth reduction under drought was partly weaker in southern plants and associated with divergence in plastic growth responses (leaf abscission) and the modulation of primary and specialized metabolites with known central functions not only in plant abiotic but also in biotic stress responses. Our study indicates that divergent selection has shaped the constitutive and drought-/heat-induced expression of numerous morphological and biochemical functional traits to mediate higher abiotic stress resistance in southern Cakile populations, and highlights that metabolomics can be a powerful tool to explore the underlying mechanisms of local adaptation in 'non-model' species.


Asunto(s)
Sequías , Calor , Espectrometría de Masas en Tándem , Plantas , Estrés Fisiológico , Fenotipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda