Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genomics ; 116(3): 110846, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38642856

RESUMEN

Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.


Asunto(s)
Movimiento Celular , Proliferación Celular , Mieloma Múltiple , Proteínas Circadianas Period , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Línea Celular Tumoral , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Apoptosis , Regulación Neoplásica de la Expresión Génica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38871868

RESUMEN

Gluconobacter oxydans succinic semialdehyde reductase (GoxSSAR) and Acetobacter aceti glyoxylate reductase (AacGR) represent a novel class in the ß-HAD superfamily. Kinetic analyses revealed GoxSSAR's activity with both glyoxylate and succinic semialdehyde, while AacGR is glyoxylate-specific. GoxSSAR K167A lost activity with succinic semialdehyde but retained some with glyoxylate, whereas AacGR K175A lost activity. These findings elucidate differences between these homologous enzymes.

3.
J Cell Biochem ; 122(11): 1639-1652, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289161

RESUMEN

Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Ácido Aspártico/metabolismo , Oxidorreductasas de Alcohol/genética , Ácido Aspártico/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , D-Aspartato Oxidasa/antagonistas & inhibidores , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacología , Células HEK293 , Células HeLa , Humanos , NADP , Piruvatos/metabolismo , Piruvatos/farmacología
4.
BMC Plant Biol ; 20(1): 357, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727356

RESUMEN

BACKGROUND: The glyoxylate reductase (GR) multigene family has been described in various plant species, their isoforms show different biochemical features in plants. However, few studies have addressed the biological roles of GR isozymes, especially for rice. RESULTS: Here, we report a detailed analysis of the enzymatic properties and physiological roles of OsGR1 and OsGR2 in rice. The results showed that both enzymes prefer NADPH to NADH as cofactor, and the NADPH-dependent glyoxylate reducing activity represents the major GR activity in various tissues and at different growth stages; and OsGR1 proteins were more abundant than OsGR2, which is also a major contributor to total GR activities. By generating and characterizing various OsGR-genetically modified rice lines, including overexpression, single and double-knockout lines, we found that no phenotypic differences occur among the various transgenic lines under normal growth conditions, while a dwarfish growth phenotype was noticed under photorespiration-promoted conditions. CONCLUSION: Our results suggest that OsGR1 and OsGR2, with distinct enzymatic characteristics, function redundantly in detoxifying glyoxylate in rice plants under normal growth conditions, whereas both are simultaneously required under high photorespiration conditions.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Oryza/fisiología , Oxidorreductasas de Alcohol/genética , Regulación de la Expresión Génica de las Plantas , Glioxilatos/metabolismo , Isoenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo , Oryza/enzimología , Fotosíntesis , Plantas Modificadas Genéticamente
5.
Biosci Biotechnol Biochem ; 84(11): 2303-2310, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32729375

RESUMEN

Enzymes related to ß-hydroxyacid dehydrogenases/3-hydroxyisobutyrate dehydrogenases are ubiquitous, but most of them have not been characterized. An uncharacterized protein with moderate sequence similarities to Gluconobacter oxydans succinic semialdehyde reductase and plant glyoxylate reductases/succinic semialdehyde reductases was found in the genome of Acetobacter aceti JCM20276. The corresponding gene was cloned and expressed in Escherichia coli. The gene product was purified and identified as a glyoxylate reductase that exclusively catalyzed the NAD(P)H-dependent reduction of glyoxylate to glycolate. The strict substrate specificity of this enzyme to glyoxylate, the diverged sequence motifs for its binding sites with cofactors and substrates, and its phylogenetic relationship to homologous enzymes suggested that this enzyme represents a novel class of enzymes in the ß-hydroxyacid dehydrogenase family. This study may provide an important clue to clarify the metabolism of glyoxylate in bacteria. Abbreviations: GR: glyoxylate reductase; GRHPR: glyoxylate reductase/hydroxypyruvate reductase; HIBADH: 3-hydroxyisobutyrate dehydrogenase; SSA: succinic semialdehyde; SSAR: succinic semialdehyde reductase.


Asunto(s)
Acetobacter/enzimología , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Cinética , Metales/farmacología , Filogenia , Especificidad por Sustrato
6.
Pediatr Transplant ; 23(1): e13313, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30475440

RESUMEN

Primary hyperoxalurias are rare inborn errors of metabolism with deficiency of hepatic enzymes that lead to excessive urinary oxalate excretion and overproduction of oxalate which is deposited in various organs. Hyperoxaluria results in serious morbid-ity, end stage kidney disease (ESKD), and mortality if left untreated. Combined liver kidney transplantation (CLKT) is recognized as a management of ESKD for children with hyperoxaluria type 1 (PH1). This study aimed to report outcome of CLKT in a pediatric cohort of PH1 patients, through retrospective analysis of data of 8 children (2 girls and 6 boys) who presented by PH1 to Wadi El Nil Pediatric Living Related Liver Transplant Unit during 2001-2017. Mean age at transplant was 8.2 ± 4 years. Only three of the children underwent confirmatory genotyping. Three patients died prior to surgery on waiting list. The first attempt at CLKT was consecutive, and despite initial successful liver transplant, the girl died of biliary peritonitis prior to scheduled renal transplant. Of the four who underwent simultaneous CLKT, only two survived and are well, one with insignificant complications, and other suffered from abdominal Burkitt lymphoma managed by excision and resection anastomosis, four cycles of rituximab, cyclophosphamide, vincristine, and prednisone. The other two died, one due to uncontrollable bleeding within 36 hours of procedure, while the other died awaiting renal transplant after loss of renal graft to recurrent renal oxalosis 6 months post-transplant. PH1 with ESKD is a rare disease; simultaneous CLKT offers good quality of life for afflicted children. Graft shortage and renal graft loss to oxalosis challenge the outcome.


Asunto(s)
Hiperoxaluria Primaria/cirugía , Trasplante de Riñón/métodos , Trasplante de Hígado/métodos , Niño , Preescolar , Femenino , Estudios de Seguimiento , Supervivencia de Injerto , Humanos , Hiperoxaluria Primaria/mortalidad , Masculino , Estudios Retrospectivos , Tasa de Supervivencia , Resultado del Tratamiento
7.
Handb Exp Pharmacol ; 245: 313-343, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29071511

RESUMEN

Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.


Asunto(s)
Hiperoxaluria Primaria/etiología , Deficiencias en la Proteostasis/etiología , Animales , Humanos , Hidroxipiruvato Reductasa/genética , Chaperonas Moleculares/uso terapéutico , Oxo-Ácido-Liasas/genética , Pliegue de Proteína , Transaminasas/química , Transaminasas/genética
8.
BMC Med Genet ; 18(1): 59, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569194

RESUMEN

BACKGROUND: Primary hyperoxaluria type 2 is a rare monogenic disorder inherited in an autosomal recessive pattern. It results from the absence of the enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). As a consequence of deficient enzyme activity, excessive amounts of oxalate and L-glycerate are excreted in the urine, and are a source for the formation of calcium oxalate stones that result in recurrent nephrolithiasis and less frequently nephrocalcinosis. CASE PRESENTATION: We report a case of a 10-month-old patient diagnosed with urolithiasis. Screening of inborn errors of metabolism, including the performance of GC/MS urine organic acid profiling and HPLC amino acid profiling, showed abnormalities, which suggested deficiency of GRHPR enzyme. Additional metabolic disturbances observed in the patient led us to seek other genetic determinants and the elucidation of these findings. Besides the elevated excretion of 3-OH-butyrate, adipic acid, which are typical marks of ketosis, other metabolites such as 3-aminoisobutyric acid, 3-hydroxyisobutyric acid, 3-hydroxypropionic acid and 2-ethyl-3-hydroxypropionic acids were observed in increased amounts in the urine. Direct sequencing of the GRHPR gene revealed novel mutation, described for the first time in this article c.454dup (p.Thr152Asnfs*39) in homozygous form. The frequent nucleotide variants were found in AGXT2 gene. CONCLUSIONS: The study presents metabolomic and molecular-genetic findings in a patient with PH2. Mutation analysis broadens the allelic spectrum of the GRHPR gene to include a novel c.454dup mutation that causes the truncation of the GRHPR protein and loss of its two functional domains. We also evaluated whether nucleotide variants in the AGXT2 gene could influence the biochemical profile in PH2 and the overproduction of metabolites, especially in ketosis. We suppose that some metabolomic changes might be explained by the inhibition of the MMSADH enzyme by metabolites that increase as a consequence of GRHPR and AGXT2 enzyme deficiency. Several facts support an assumption that catabolic conditions in our patient could worsen the degree of hyperoxaluria and glyceric aciduria as a consequence of the elevated production of free amino acids and their intermediary products.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Oxidorreductasas de Alcohol/genética , Hiperoxaluria Primaria/genética , Oxidorreductasas de Alcohol/metabolismo , Ácidos Aminoisobutíricos/orina , Análisis Mutacional de ADN , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidroxibutiratos/orina , Hiperoxaluria Primaria/diagnóstico , Lactante , Ácido Láctico/análogos & derivados , Ácido Láctico/orina , Urolitiasis/diagnóstico , Urolitiasis/genética , Valeratos/orina
9.
Biochim Biophys Acta ; 1834(12): 2663-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24076009

RESUMEN

NADPH-dependent glyoxylate reductases from Arabidopsis thaliana (AtGLYR) convert both glyoxylate and succinic semialdehyde into their corresponding hydroxyacid equivalents. The primary sequence of cytosolic AtGLYR1 reveals several sequence elements that are consistent with the ß-HAD (ß-hydroxyacid dehydrogenase) protein family, whose members include 3-hydroxyisobutyrate dehydrogenase, tartronate semialdehyde reductase and 6-phosphogluconate dehydrogenase. Here, site-directed mutagenesis was utilized to identify catalytically important amino acid residues for glyoxylate reduction in AtGLYR1. Kinetic studies and binding assays established that Lys170 is essential for catalysis, Phe231, Asp239, Ser121 and Thr95 are more important in substrate binding than in catalysis, and Asn174 is more important in catalysis. The low activity of the mutant enzymes precluded kinetic studies with succinic semialdehyde. The crystal structure of AtGLYR1 in the absence of substrate was solved to 2.1Å by molecular replacement using a previously unrecognized member of the ß-HAD family, cytokine-like nuclear factor, thereby enabling the 3-D structure of the protein to be modeled with substrate and co-factor. Structural alignment of AtGLYR1 with ß-HAD family members provided support for the essentiality of Lys170, Phe173, Asp239, Ser121, Asn174 and Thr95 in the active site and preliminary support for an acid/base catalytic mechanism involving Lys170 as the general acid and a conserved active-site water molecule. This information established that AtGLYR1 is a member of the ß-HAD protein family. Sequence and activity comparisons indicated that AtGLYR1 and the plastidial AtGLYR2 possess structural features that are absent in Arabidopsis hydroxypyruvate reductases and probably account for their stronger preference for glyoxylate over hydroxypyruvate.


Asunto(s)
Oxidorreductasas de Alcohol/química , Aminoácidos/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Proteínas de Cloroplastos/química , Glioxilatos/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Sustitución de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cristalografía por Rayos X , Glioxilatos/metabolismo , Mutación Missense , Oxidación-Reducción , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Biochim Biophys Acta ; 1834(12): 2463-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23988828

RESUMEN

Excessive action of angiotensin II on mitochondria has been shown to play an important role in mitochondrial dysfunction, a common feature of atherogenesis and kidney injury. Angiotensin-(1-7)/Mas receptor axis constitutes a countermeasure to the detrimental effects of angiotensin II on AT1 receptors. The aim of the study was to assess the effects of angiotensin-(1-7) peptidomimetic AVE0991 on the kidney mitochondrial proteome in widely used animal model of atherosclerosis (apoE(-/-) mice). Proteins changed in apoE(-/-) mice belonged to the groups of antioxidant enzymes, apoptosis regulators, inflammatory factors and metabolic enzymes. Importantly, AVE0991 partially reversed atherosclerosis-related changes in apoE(-/-) mice.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Imidazoles/farmacología , Riñón/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogénicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animales , Antioxidantes/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Mediadores de Inflamación/metabolismo , Riñón/lesiones , Riñón/patología , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteoma/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
J Microbiol Biotechnol ; 27(8): 1419-1427, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28621109

RESUMEN

As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum, which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.


Asunto(s)
Alimentos Fermentados/microbiología , Genoma Bacteriano , Lactobacillus plantarum/genética , Lactobacillus plantarum/aislamiento & purificación , Genes Bacterianos , Genómica , Corea (Geográfico) , Análisis de Secuencia de ADN
12.
Pathol Res Pract ; 212(5): 365-71, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26997491

RESUMEN

Glyoxylate reductase/hydroxypyruvate reductase (GRHPR), which exists mainly in the liver, is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the formation of primary hyperoxaluria type 2 (PH2). Here, we investigated GRHPR expression and its potential role in both human Crohn's disease (CD) and experimental colitis. Murine experimental colitis models were established by administration of trinitrobenzenesulphonic acid (TNBS). As shown by Western blot, significant up-regulation of GRHPR was found in TNBS-treated mice as compared with normal controls. Immunohistochemistry (IHC) also showed increased GRHPR expression, and the molecule was located in intestinal epithelial cells (IECs). This phenomenon also occurred in patients with Crohn's disease. Besides, in an in vitro study, human IEC line HT-29 cells cultured with tumor necrosis factor α (TNF-α) were used to evaluate the changes in expression of GRHPR. Moreover, overexpression of GRHPR was accompanied by active caspase-3 and cleaved poly ADP-ribose polymerase (PARP) accumulation. Furthermore, knock-down GRHPR could inhibit the accumulation of active caspase-3 and cleaved PARP as shown by Western blot in TNF-α treated HT-29 cells. Flow cytometry assay indicated that interference of GRHPR led to increasing apoptosis of IECs. These data suggested that GRHPR might exert its pro-apoptosis function in IECs. Thus, GRHPR might play an important role in regulating IECs apoptosis, and might be a potential therapeutic target for CD.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Apoptosis/fisiología , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Regulación hacia Arriba , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Colitis/inducido químicamente , Colitis/patología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Mucosa Intestinal/patología , Intestinos/patología , Ratones , Ácido Trinitrobencenosulfónico
13.
Enzyme Microb Technol ; 60: 72-9, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24835102

RESUMEN

A glyoxylate reductase gene (PtGR) from the fungus Paecilomyces thermophila was cloned and expressed in Escherichia coli. PtGR was biochemically and structurally characterized. PtGR has an open reading frame of 993bp encoding 330 amino acids. The deduced amino acid sequence has low similarities to the reported glyoxylate reductases. The purified PtGR forms a homodimer. PtGR displayed an optimum pH of 7.5 and broad pH stability (pH 4.5-10). It exhibited an optimal temperature of 50°C and was stable up to 50°C. PtGR was found to be highly specific for glyoxylate, but it showed no detectable activity with 4-methyl-2-oxopentanoate, phenylglyoxylate, pyruvate, oxaloacetate and α-ketoglutarate. PtGR prefered NADPH rather than NADH as an electron donor. Moreover, the crystal structure of PtGR was determined at 1.75Å resolution. The overall structure of apo-PtGR monomer adopts the typical d-2-hydroxy-acid dehydrogenase fold with a "closed" conformation unexpectedly. The coenzyme specificity is provided by a cationic cluster consisting of N184, R185, and N186 structurally. These structural observations could explain its different coenzyme and substrate specificity.


Asunto(s)
Oxidorreductasas de Alcohol/química , Proteínas Fúngicas/química , Paecilomyces/enzimología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , ADN de Hongos/genética , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Paecilomyces/genética , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda