Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Amino Acids ; 56(1): 17, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393495

RESUMEN

The development of the goat mammary gland is mainly under the control of ovarian hormones particularly estrogen and progesterone (P4). Amino acids play an essential role in mammary gland development and milk production, and sodium-coupled neutral amino acid transporter 2 (SNAT2) was reported to be expressed in the mammary gland of rats and bovine mammary epithelial cells, which may affect the synthesis of milk proteins or mammary cell proliferation by mediating prolactin, 17ß-estradiol (E2) or methionine function. However, whether SNAT2 mediates the regulatory effects of E2 and P4 on the development of the ruminant mammary gland is still unclear. In this study, we show that E2 and P4 could increase the proliferation of goat mammary epithelial cells (GMECs) and regulate SNAT2 mRNA and protein expression in a dose-dependent manner. Further investigation revealed that SNAT2 is abundantly expressed in the mammary gland during late pregnancy and early lactation, while knockdown and overexpression of SNAT2 in GMECs could inhibit or enhance E2- and P4-induced cell proliferation as well as mammalian target of rapamycin (mTOR) signaling. We also found that the accelerated proliferation induced by SNAT2 overexpression in GMECs was suppressed by the mTOR signaling pathway inhibitor rapamycin. This indicates that the regulation of GMECs proliferation mediated by SNAT2 in response to E2 and P4 is dependent on the mTOR signaling pathway. Finally, we found that the total content of the amino acids in GMECs changed after knocking-down and overexpressing SNAT2. In summary, the results demonstrate that the regulatory effects of E2 and P4 on GMECs proliferation may be mediated by the SNAT2-transported amino acid pathway. These results may offer a novel nutritional target for improving the development of the ruminant mammary gland and milk production.


Asunto(s)
Estrógenos , Cabras , Progesterona , Animales , Femenino , Embarazo , Aminoácidos/metabolismo , Proliferación Celular , Células Epiteliales/metabolismo , Estrógenos/metabolismo , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Progesterona/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Cell Biochem Funct ; 42(2): e3982, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488412

RESUMEN

Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-ß (TGF-ß) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.


Asunto(s)
Proteína Morfogenética Ósea 2 , Cabras , Cricetinae , Animales , Humanos , Proteína Morfogenética Ósea 2/farmacología , Cricetulus , Factor de Crecimiento Transformador beta , Proteínas Recombinantes/farmacología , Células Epiteliales
3.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38623994

RESUMEN

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Asunto(s)
Caseínas , MicroARNs , Femenino , Animales , Caseínas/genética , Caseínas/metabolismo , Proteínas de la Leche , Cabras/fisiología , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glándulas Mamarias Animales/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674585

RESUMEN

Oxidative stress in high-yielding dairy goats adversely affects lactation length, milk quality, and the economics of dairy products. During the lactation period, goat mammary epithelial cells (GMECs) are often in a state of disordered metabolic homeostasis primarily caused by the overproduction of reactive oxygen species (ROS). Sulforaphane (SFN), an electrophilic compound that is enriched in broccoli, is a promising antioxidant agent for future potential clinical applications. The objective of the present study was to investigate the function of SFN on hydrogen peroxide (H2O2)-induced oxidative damage in primary GMECs and the underlying molecular mechanisms. Isolated GMECs in triplicate were pretreated with SFN (1.25, 2.5, and 5 µM) for 24 h in the absence or presence of H2O2 (400 µM) for 24 h. The results showed that SFN effectively enhanced superoxide dismutase (SOD) activity, elevated the ratio of glutathione (GSH)/glutathione oxidized (GSSG), and reduced H2O2-induced ROS and malondialdehyde (MDA) production and cell apoptosis. Mechanically, SFN-induced nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) translocation to the nucleus through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway coupled with inhibition of the caspase apoptotic pathway. In addition, GMECs were transfected with NFE2L2 small interfering RNA (NFE2L2 siRNA) for 48 h and/or treated with SFN (5 µM) for 24 h before being exposed to H2O2 (400 µM) for 24 h. We found that knockdown of NFE2L2 by siRNA abrogated the preventive effect of SFN on H2O2-induced ROS overproduction and apoptosis. Taken together, sulforaphane suppressed H2O2-induced oxidative stress and apoptosis via the activation of the AMPK/NFE2L2 signaling pathway in primary GMECs.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Femenino , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Cabras/genética , Estrés Oxidativo , Antioxidantes/farmacología , Isotiocianatos/farmacología , Transducción de Señal , Células Epiteliales/metabolismo , Glutatión/metabolismo , ARN Interferente Pequeño/metabolismo , Apoptosis
5.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373175

RESUMEN

MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.


Asunto(s)
Cabras , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Triglicéridos/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo
6.
Hereditas ; 159(1): 21, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549778

RESUMEN

BACKGROUND: Ferroptosis, a novel manner of cell death depended on iron ion, contributed to goat mammary epithelial cell dysfunction. Interleukin-6 (IL-6) is a major pro-inflammatory factor during many inflammation-related diseases including mastitis, and a quite recently identified ferroptosis inducer. This study aims to explore the role of IL-6 in the dysfunction of goat mammary epithelial cells (GMECs) and how the level of IL-6 was regulated. METHODS: Primary GMECs were isolated, cultured and treated with lipopolysaccharide (LPS) alone or together with Ferrostatin-1 (Fer-1), a well-known ferroptosis inhibitor. CCK-8 was used to detect cell viability, ELISA was used to detect TNF-α content, and the levels of ROS, GSH and MDA were analyzed with DCFDA-cell ROS detection kit, GSH assay kit and MDA assay kit, respectively. The iron ion level was measured with an iron assay kit. RESULTS: The expression level of IL-6 protein in GMECs was up-regulated in response to LPS treatment, and the secretion of TNF-α, the cell oxidative stress level and the Fe2+ ion content was robustly increased, which could be reversed by Fer-1 treatment. Knockdown of IL-6 decreased cell oxidative stress level and inhibited ferroptosis in LPS-treated GMECs. Further, ubiquitin experiment and co-immunoprecipitation assay showed that USP14 upregulated IL-6 protein expression by reducing the ubiquitination of IL-6, and overexpression of IL-6 reversed the inhibitory effect of USP14 shRNA on LPS-treated GMECs ferroptosis. The NRF2 inhibitor Brusatol reversed the inhibitory effect of IL-6 shRNA on LPS-treated ferroptosis. CONCLUSION: IL-6 protein is deubiquitinated by USP14 and upregulated in LPS-treated GMECs, further promoting ferroptosis and inflammation through the NRF2 signaling pathway.


Asunto(s)
Ferroptosis , Animales , Células Epiteliales/metabolismo , Femenino , Cabras/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hierro/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409428

RESUMEN

Fatty acid composition is a key factor affecting the flavor and quality of goat milk. CircRNAs are now recognized as important regulators of transcription, and they play an important role in the control of fatty acid synthesis. Thus, understanding the regulatory mechanisms controlling this process in ruminant mammary glands is of great significance. In the present study, mammary tissue from dairy goats during early lactation and the dry period (nonlactating) were collected and used for high-throughput sequencing. Compared to levels during the dry period, the expression level of circ003429 during early lactation was lower (12.68-fold downregulated). In isolated goat mammary epithelial cells, circ003429 inhibited the synthesis of triglycerides (TAG) and decreased the content of unsaturated fatty acids (C16:1, C18:1, and C18:2), indicating that this circRNA plays an important role in regulating lipid synthesis. A binding site for miR-199a-3p in the circ003429 sequence was detected, and a dual-luciferase reporter system revealed that circ003429 targets miR-199a-3p. Overexpression of circ003429 (pcDNA-circ003429) downregulated the abundance of miR-199a-3p. In contrast, overexpression of miR-199a-3p increased TAG content and decreased mRNA abundance of Yes-associated protein 1 (YAP1) (a target gene of miR-199a-3p), and TAG content was decreased and mRNA abundance was increased in response to overexpression of circ003429. These results indicate that circ003429 alleviates the inhibitory effect of miR-199a-3p on the mRNA abundance of YAP1 by binding miR-199a-3p, resulting in subsequent regulation of the synthesis of TAG and unsaturated fatty acids.


Asunto(s)
Glándulas Mamarias Animales , MicroARNs , Animales , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , ARN Mensajero/genética
8.
J Dairy Sci ; 104(5): 6253-6266, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33685712

RESUMEN

The elongation of long-chain fatty acid family member 6 (ELOVL6) gene plays an important role in the synthesis of long-chain saturated and monounsaturated fatty acids. Although some studies have revealed that ELOVL6 is the target of sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) in rodents, the mechanism underlying ELOVL6 regulation during lactation in dairy goats remains unknown. The present study aimed to investigate the transcriptional regulation mechanism of ELOVL6 in goat mammary epithelial cells (GMEC). We used PCR to clone and sequenced a 2,370 bp fragment of the ELOVL6 5' flanking region from goat genomic DNA. Deletion analysis revealed a core promoter region located -105 to -40 bp upstream of the transcriptional start site. Mutant sterol regulatory elements (SRE) 1 and 3 significantly reduced the ELOVL6 promoter activities in GMEC. Both SRE1 and SRE3 binding sites were required for the basal transcriptional activity of ELOVL6. Luciferase reporter assays showed that SREBF1 knockdown decreased ELOVL6 promoter activities in GMEC. Furthermore, SRE1 and SRE3 sites were simultaneously mutated completely abolished the stimulatory effect of SREBF1 and the repressive effect of linoleic acid on ELOVL6 gene promoter activities. Furthermore, chromatin immunoprecipitation assays confirmed that SREBP1 directly bound to SRE sites in the ELOVL6 promoter. In conclusion, these results indicate that SREBP1 regulates ELOVL6 transcription via the SRE elements located in the ELOVL6 promoter in goat mammary gland.


Asunto(s)
Cabras , Glándulas Mamarias Animales , Animales , Sitios de Unión , Células Epiteliales/metabolismo , Ácidos Grasos , Femenino , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Regiones Promotoras Genéticas/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles
9.
J Dairy Sci ; 103(10): 9561-9572, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828499

RESUMEN

Compared with other milk proteins, αS1-casein (encoded by CSN1S1) is associated with higher rates of allergies in humans. Although some studies have revealed that CSN1S1 affects a variety of cellular physiological processes such as immune response and proliferation in various cells, whether CSN1S1 regulates other milk proteins in ruminants is not known. In this study, we observed a negative Pearson correlation between the contents of αS1-casein and ß-casein in goat milk. Thus, we used isolated primary goat mammary epithelial cells along with adenoviral infection or small interference RNA to alter abundance of CSN1S1 and examine its role in milk protein synthesis regulation. Overexpressing CSN1S1 through adenoviral transfection decreased ß-casein mRNA (CSN2) and protein abundance, whereas interference of CSN1S1 resulted in a significant increase in ß-casein abundance. CSN1S1 reduced phosphorylation level of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5a (STAT5a). The transcription factor STAT5a activates CSN2 transcription by binding with its promoter region and then promotes ß-casein synthesis. Furthermore, CSN1S1 inhibited CSN2 promoter activity and ß-casein synthesis by modulating the JAK2/STAT5a signaling pathway. No changes in abundance were detected for αS2-casein (CSN1S2), κ-casein (CSN3) and major whey proteins (LALBA, BLG). Overall, our results underscored a mechanism whereby CSN1S1 inhibits ß-casein synthesis via inhibition of STAT5a. The data suggested that knocking down CSN1S1 not only reduced the content of αS1-casein, but also increased the abundance of major milk proteins including ß-casein. Thus, the present study provides a theoretical basis for manipulating αS1-casein mRNA to improve quality of ruminant milk for human consumption.


Asunto(s)
Alérgenos/análisis , Caseínas/genética , Regulación de la Expresión Génica , Leche/química , Animales , Caseínas/metabolismo , Femenino , Cabras/metabolismo , Proteínas de la Leche/análisis
10.
Yi Chuan ; 42(4): 380-387, 2020 Apr 20.
Artículo en Zh | MEDLINE | ID: mdl-32312707

RESUMEN

tPA is a thrombolytic agent widely used in clinical settings. While double gene co-integration into organisms can produce synergistic effects and improved expression levels of the target gene, there are few reports detailing the co-integration of the tPA and gGH genes and an increased expression level of tPA. In order to study this, we obtained monoclonal goat mammary epithelial cell lines with tPA/gGH double gene integration and we analyzed the tPA expression level of single and double gene integration cells. We constructed a mammary gland-specific expression vector PCL25/gGH by using the ß-casein gene as the regulatory sequence. The tPA and gGH genes were co-transfected into goat mammary epithelial cells by electrotransfection. Resistant cell lines were screened by G418, and transgenic monoclonal cell lines were obtained by PCR detection. tPA expression was induced by prolactin and subsequently, the cell induction solution was assayed after 48 hours by ELISA and Western blotting. The results show that a total of 142 resistant monoclonal cells were obtained including 53 tPA monogenic integration cell lines and 34 tPA/gGH double gene integration cell lines. The rate of double gene integration was 23.9% (34/142). A total of 29 cells were detected to be able to express tPA, of which 12 were single-gene-expressing cells and the corresponding expression rate was 22.6% (12/53). There were 17 double-gene- expressing cells with a corresponding expression rate of 50.0% (17/34). The expression level of tPA in single-gene cells was 7.5-52.0 µg/mL, while in double-gene cells was 40-360 µg/mL, which was significantly greater than that in single- gene cells. The goat mammary epithelial cell lines with tPA/gGH gene integration were successfully obtained by electrotransfection, and we proved that the expression level of tPA in the double gene integration cell lines with tPA/gGH gene integration was significantly increased. Our findings lay the foundation for the additional study of highly expressed transgenic goats and other animals with determination of scientific and clinical utility.


Asunto(s)
Animales Modificados Genéticamente , Células Epiteliales , Glándulas Mamarias Animales/citología , Transfección , Animales , Caseínas , Femenino , Cabras , Activador de Tejido Plasminógeno/genética
11.
Biochem Biophys Res Commun ; 443(2): 389-94, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24309099

RESUMEN

Stearoyl-CoA desaturase-1 (Scd1) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Overexpression of Scd1 in transgenic animals would modify the nutritional value of ruminant-derived foods by increasing the monounsaturated fatty acid (MUFA) and decreasing the saturated fatty acid (SFA) content. The aim of this study was to develop an effective Scd1 vector that is specifically expressed in dairy goat mammary glands. We successfully amplified the goat full length Scd1 cDNA and evaluated its activity in goat ear skin-derived fibroblast cells (GEFCs) by lipid analysis. In addition, we constructed a mammary gland-specific expression vector and confirmed efficient expression of Scd1 in goat mammary epithelial cells (GMECs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that Scd1-overexpression resulted in an increase in levels of palmitoleic acid (16:1n-7) and oleic acid (18:1n-9), from 1.73 ± 0.02% to 2.54 ± 0.02% and from 27.25 ± 0.13% to 30.37 ± 0.04%, respectively (both p<0.01) and the ratio of MUFA to SFA was increased. This work lays a foundation for the generation of Scd1 transgenic goats.


Asunto(s)
Clonación Molecular/métodos , Ácidos Grasos Monoinsaturados/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Cabras/fisiología , Ácido Oléico/biosíntesis , Estearoil-CoA Desaturasa/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Ácidos Grasos Monoinsaturados/aislamiento & purificación , Mejoramiento Genético/métodos , Vectores Genéticos/genética , Ácido Oléico/aislamiento & purificación , Estearoil-CoA Desaturasa/genética , Regulación hacia Arriba/genética
12.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583827

RESUMEN

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Asunto(s)
Células Epiteliales , Cabras , Metabolismo de los Lípidos , Glándulas Mamarias Animales , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Metabolismo de los Lípidos/genética , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Regulación hacia Arriba/genética , Gotas Lipídicas/metabolismo , Regulación de la Expresión Génica , Triglicéridos/metabolismo
13.
Cells ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273030

RESUMEN

The prolactin (PRL) hormone is a major regulator of mammary gland development and lactation. However, it remains unclear whether and how PRL contributes to mammary epithelial cell proliferation and secretion. The Boer and Macheng black crossbred goats are superior in reproduction, meat, and milk, and are popular in Hubei province. To elucidate the mechanisms of PRL on mammary growth and lactation, to improve the local goat economic trade, we have performed studies on these crossbred goats during pregnancy and early lactation, and in goat mammary epithelial cells (GMECs). Here, we first found that the amino acid transporters of SNAT1 and SNAT2 expression in vivo and in vitro were closely associated with PRL levels, the proliferation and secretion of GMECs; knockdown and over-expression of SNAT1/2 demonstrated that PRL modulated the proliferation and lactation of GMECs through regulating SNAT1/2 expression. Transcriptome sequencing and qPCR assays demonstrated the effect of PRL on the transcriptional regulation of SNAT1 and SNAT2 in GMECs. Dual-luciferase reporter gene assays further verified that the binding of the potential PRL response element in the SNAT1/2 promoter regions activated SNAT1/2 transcription after PRL stimulation. Additionally, silencing of either PRLR or STAT5 nearly abolished PRL-stimulated SNAT1/2 promoter activity, suggesting PRLR-STAT5 signaling is involved in the regulation of PRL on the transcriptional activation of SNAT1/2. These results illustrated that PRL modulates the proliferation and secretion of GMECs via PRLR-STAT5-mediated regulation of the SNAT1/2 pathway. This study provides new insights into how PRL affects ruminant mammary development and lactation through regulation of amino acid transporters.


Asunto(s)
Proliferación Celular , Células Epiteliales , Cabras , Lactancia , Glándulas Mamarias Animales , Prolactina , Animales , Prolactina/metabolismo , Femenino , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Factor de Transcripción STAT5/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Embarazo , Regiones Promotoras Genéticas/genética
14.
Food Res Int ; 175: 113818, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129015

RESUMEN

Human and animal exposure to microplastics (MPs) contained in food is inevitable because of their widespread existence in the environment. Nevertheless, MPs toxicity studies in ruminants often lack attention. Here, we assessed the cytotoxicity of polystyrene microplastics (PS MPs) on goat mammary epithelial cells (GMECs). Compared to controls, PS MPs treatment significantly reduced cell viability, altered cell morphology and disrupted organelle integrity. Detection of membrane potential and reactive oxygen species (ROS) suggested that PS MPs induced mitochondrial dysfunction and oxidative stress. Further transcriptome analysis also confirmed alterations in these pathways. In addition, several genes related to endoplasmic reticulum (ER) homeostasis were significantly regulated in the transcriptional profile. Subsequent experiments confirmed that PS MPs induce ER stress via the PERK/eIF2α/CHOP pathway, accompanied by intracellular Ca2+ overload. Meanwhile, downstream activation of the Bax/Bcl-2 pathway and caspase cascade released apoptotic signals, which led to apoptosis in GMECs. Interestingly, the addition of PERK inhibitor (ISRIB) attenuated PS MPs-induced ER stress and apoptosis, which suggests that ER stress may exacerbate PS MPs-induced cytotoxicity. This work reveals the impact of MPs on mammalian cytotoxicity, enriches the mechanisms for the toxicity of MPs, and provides insight for further assessment of the risk of MPs in food.


Asunto(s)
Microplásticos , Plásticos , Animales , Humanos , Microplásticos/toxicidad , Microplásticos/metabolismo , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mamíferos/metabolismo
15.
Int J Biol Macromol ; 266(Pt 2): 131043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518943

RESUMEN

Goat milk is rich in various fatty acids that are beneficial to human health. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and RNA-seq analyses of goat mammary glands at different lactation stages revealed a novel lactation regulatory factor, Prospero homeobox 1 (PROX1). However, the mechanism whereby PROX1 regulates lipid metabolism in dairy goats remains unclear. We found that PROX1 exhibits the highest expression level during peak lactation period. PROX1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., SREBP1 and FASN) and triacylglycerol (TAG) synthesis (e.g., DGAT1 and GPAM) in goat mammary epithelial cells (GMECs). Consistently, intracellular TAG and lipid droplet contents were significantly increased in PROX1 knockdown cells and reduced in PROX1 overexpression cells, and we observed similar results in PROX1 knockout mice. Following PROX1 overexpression, RNA-seq showed a significant upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A) expression. Further, PPARGC1A knockdown attenuated the inhibitory effects of PROX1 on TAG contents and lipid-droplet formation in GMECs. Moreover, we found that PROX1 promoted PPARGC1A transcription via the PROX1 binding sites (PBSs) located in the PPARGC1A promoter. These results suggest a novel target for manipulating the goat milk-fat composition and improving the quality of goat milk.


Asunto(s)
Ácidos Grasos , Técnicas de Silenciamiento del Gen , Cabras , Proteínas de Homeodominio , Lactancia , Glándulas Mamarias Animales , Leche , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Supresoras de Tumor , Animales , Cabras/genética , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Leche/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Femenino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lactancia/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ratones , Regulación de la Expresión Génica , Células Epiteliales/metabolismo , Regiones Promotoras Genéticas , Metabolismo de los Lípidos/genética
16.
Animals (Basel) ; 13(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37760235

RESUMEN

Lactoferrin (LF) is believed to be an important active protein in goat milk, which plays an anti-inflammatory role. Although LF has been reported to be associated with body health, its exact underlying mechanism remains unclear. Here, we aimed to elucidate the mechanism of this anti-inflammatory effect of LF in vitro. We first identified that miR-214-5p inhibited the expression of LF mRNA and protein in cells through the 3'UTR of LF mRNA. We next identified the alterations in miRNA following LF overexpression in goat mammary epithelial cells (GEMCs). Overexpression of LF significantly increased (p < 0.05) miR-224-5p expression. We further revealed that transcriptional activation of ADAM17, TNF-α, IL-1ß, and IL-6 was efficiently decreased (p < 0.05) in GMECs treated by miR-224-5p mimic. Conversely, knockdown of miR-224-5p increased (p < 0.05) ADAM17, TNF-α, IL-1ß, and IL-6 expression. Additionally, TNF-α, IL-1ß, and IL-6 expression levels were dramatically decreased in GMECs after administration of siADAM17. Herein, we indicate that the miR-214-5p/LF/miR-224-5p/ADAM17 axis is involved in the immune regulation of GEMCs.

17.
J Anim Sci Biotechnol ; 14(1): 61, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37131202

RESUMEN

BACKGROUND: Mastitis not only deteriorates the composition or quality of milk, but also damages the health and productivity of dairy goats. Sulforaphane (SFN) is a phytochemical isothiocyanate compound with various pharmacological effects such as anti-oxidant and anti-inflammatory. However, the effect of SFN on mastitis has yet to be elucidated. This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide (LPS)-induced primary goat mammary epithelial cells (GMECs) and a mouse model of mastitis. RESULTS: In vitro, SFN downregulated the mRNA expression of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6), inhibited the protein expression of inflammatory mediators (cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS)) while suppressing nuclear factor kappa-B (NF-κB) activation in LPS-induced GMECs. Additionally, SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation, up-regulating antioxidant enzymes expression, and decreasing LPS-induced reactive oxygen species (ROS) production in GMECs. Furthermore, SFN pretreatment promoted the autophagy pathway, which was dependent on the increased Nrf2 level, and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response. In vivo, SFN effectively alleviated histopathological lesions, suppressed the expression of inflammatory factors, enhanced immunohistochemistry staining of Nrf2, and amplified of LC3 puncta LPS-induced mastitis in mice. Mechanically, the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis. CONCLUSIONS: These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflammation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis, which may improve prevention strategies for mastitis in dairy goats.

18.
Anim Biosci ; 36(10): 1488-1498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37170511

RESUMEN

OBJECTIVE: αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). METHODS: αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. RESULTS: Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances ß-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes ß-casein abundance through target gene αS1-casein, and activates ß-casein transcription by enhancing the binding of STAT5 to ß-casein gene promoter region. CONCLUSION: miR-380-3p decreases αS1-casein expression and increases ß-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.

19.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36547378

RESUMEN

CCAAT/enhancer binding protein α (C/EBPα) is the key transcription factor involved in lipid metabolism, however, the role of C/EBPα in milk fat synthesis of dairy goats remains unknown. The objective of the present research was to clarify the function of C/EBPα in goat mammary epithelial cells (GMECs) and its impact on peroxisome proliferator-activated receptor gamma (PPARG) promoter activity. In this study, C/EBPα overexpression increased its mRNA and protein levels by 42-fold and 6-fold, respectively. In contrast, transfecting siRNA targeting C/EBPα decreased its mRNA level to 20% and protein abundance to 80% of the basal level. The contents of lipid droplets, triacylglycerol (TAG), and cholesterol were increased (P < 0.05) in C/EBPα-overexpressing GMECs, and knockdown of C/EBPα led to the opposite results. Overexpression of C/EBPα significantly increased the expression levels of genes involved in TAG synthesis (AGPAT6, DGAT2, P < 0.01), lipid droplet formation (PLIN2, P < 0.01), and fatty acid synthesis (FADS2, P < 0.05; ELOVL6, P < 0.01). Knockdown of C/EBPα decreased (P < 0.05) the expression levels of AGPAT6, DGAT1, DGAT2, PLIN2, FADS2, and ELOVL6. C/EBPα upregulated the expression level of PPARG (P < 0.05), and four C/EBPα binding regions were identified in the PPARG promoter at -1,112 to -1,102 bp, -734 to -724 bp, -248 to -238 bp, and -119 to -109 bp. Knockdown of C/EBPα reduced (P < 0.05) the PPARG promoter activity when the C/EBPα binding regions were mutated at -1,112 to -1,102 bp, -734 to -724 bp, and -248 to -238 bp locations of the promoter. However, the promoter activity did not change when the mutation was located at -119 bp. In conclusion, our results suggest that C/EBPα can promote TAG synthesis in GMECs through its effects on mRNA abundance of genes related to lipid metabolism and regulation of the PPARG promoter activity via C/EBPα binding regions.


Goat milk is beneficial for human health because of its nutritional value, especially milk fat, which is plentiful in goat milk. The molecular mechanism of milk fat synthesis is of great importance for developing processing technology and using genetic approaches to improve goat milk quality. The purpose of this study was to identify the role of CCAAT/enhancer binding protein α (C/EBPα) in goat mammary gland epithelial cells (GMECs) to provide support for understanding the mechanism of milk fat synthesis. Overexpression of C/EBPα increased the contents of lipid droplets, triacylglycerol, and cholesterol in GMECs. The expression levels of genes related to lipid metabolism were influenced after C/EBPα overexpression or inhibition. The promoter transcriptional activity of peroxisome proliferator-activated receptor gamma, which is the key transcription factor in milk fat synthesis, was regulated by C/EBPα through its binding regions. Our results indicate that C/EBPα affects lipid metabolism in GMECs by regulating PPARG transcription. This study provides support for milk fat synthesis regulation and improvement of milk quality in goats.


Asunto(s)
Ácidos Grasos , PPAR gamma , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Ácidos Grasos/metabolismo , Cabras/genética , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Glándulas Mamarias Animales/metabolismo , Triglicéridos/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/genética
20.
PeerJ ; 11: e15207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187521

RESUMEN

Background: The epithelial-mesenchymal transition (EMT) is a multi-step morphogenetic process in which epithelial cells lose their epithelial properties and gain mesenchymal characteristics. The process of EMT has been shown to mediate mammary gland fibrosis. Understanding how mesenchymal cells emerge from an epithelial default state will aid in unravelling the mechanisms that control fibrosis and, ultimately, in identifying therapeutic targets to alleviate fibrosis. Methods: The effects of EGF and high glucose (HG) on EMT in mammary epithelial cells, MCF10A and GMECs, as well as their pathogenic role, were studied. In-silico analysis was used to find interacting partners and protein-chemical/drug molecule interactions. Results: On treatment with EGF and/or HG, qPCR analysis showed a significant increase in the gene expression of EMT markers and downstream signalling genes. The expression of these genes was reduced on treatment with EGF+HG combination in both cell lines. The protein expression of COL1A1 increased as compared to the control in cells treated with EGF or HG alone, but when the cells were treated with EGF and HG together, the protein expression of COL1A1 decreased. ROS levels and cell death increased in cells treated with EGF and HG alone, whereas cells treated with EGF and HG together showed a decrease in ROS production and apoptosis. In-silico analysis of protein-protein interactions suggest the possible role of MAPK1, actin alpha 2 (ACTA2), COL1A1, and NFκB1 in regulating TGFß1, ubiquitin C (UBC), specificity protein 1 (SP1) and E1A binding protein P300 (EP300). Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment suggests advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signalling pathway, relaxin signalling pathway and extra cellular matrix (ECM) receptor interactions underlying fibrosis mechanism. Conclusion: This study demonstrates that EGF and HG induce EMT in mammary epithelial cells and may also have a role in fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Glándulas Mamarias Humanas , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Epidérmico/farmacología , Especies Reactivas de Oxígeno/farmacología , Fibrosis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda