Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Small ; 20(2): e2305344, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658517

RESUMEN

The development of advanced and efficient synthetic methods is pivotal for the widespread application of 2D materials. In this study, a facile and scalable solvent-free mechanochemical approach is approached, employing graphene quantum dots (GQDs) as exfoliation agents, for the synthesis and functionalization of nearly atom-layered MoS2 nanosheets (ALMS). The resulting ALMS exhibits an ultrathin average thickness of 4 nm and demonstrates high solvent stability. The impressive yield of ALMS reached 63%, indicating its potential for scalable production of stable nanosheets. Remarkably, the ALMS catalyst exhibits excellent HER performance. Moreover, the ALMS catalyst showcases exceptional long-term durability, maintaining stable performance for nearly 200 h, underscoring its potential as a highly efficient and durable electrocatalyst. Significantly, the catalytic properties of ALMS are significantly influenced by ball milling production conditions. The GQD-assisted large-scale machinery synthesis pathway provides a promising avenue for the development of efficient and high-performance ultrathin 2D materials.

2.
Nanotechnology ; 35(18)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358678

RESUMEN

Graphene is broadly applied as sensitive sensing material results from its superb features. Concurrently, as a derivative of graphene with 0D structure, graphene quantum dots (GQDs) offer more possibilities as a supportive sensing material due to its adjustable size and functional group modification. In this work, GQDs are introduced to single-layer graphene (SLG) based humidity sensor to enhance the sensing performance. Specifically, consistent resistance response to relative humidity (RH) is extended from the range of 10%-60% to 10%-90% by contrary to original SLG based sensor. Parallelly, effect of the amount of GQDs is investigated by means of multiple GQDs deposition. As the resultant higher binding efficiency between water molecules and the functional groups of GQDs, improved response rate is observed. For the case of 4-time deposition of GQDs, the response rate (ΔR/R) reaches ∼130% in RH range of 10%-90%. Besides, the response time and recovery time are ∼0.7 s and ∼1.1 s, respectively. The fluctuation of the resistance change of the sensor under constant humidity is less than 5% over a month which demonstrates long-term reliability.

3.
Nanotechnology ; 35(37)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853586

RESUMEN

A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.


Asunto(s)
Técnicas Biosensibles , Grafito , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Humanos , Técnicas Biosensibles/métodos , Sistemas de Liberación de Medicamentos , Animales
4.
J Fluoresc ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874823

RESUMEN

Tyrosinase inhibitors have the ability to resist melanin formation and can be used for clinical and cosmetic, so it is becoming extremely crucial to search a rapid and effective method for detecting t the activity of tyrosinase. In this study, a sensing probe based on Nitrogen-doped graphene quantum dots (N-GQDs) were prepared with carbamide and citric acid. Tyrosinase can oxidize dopamine to dopamine quinone, which can quench the fluorescence of N-GQDs based on the principle of fluorescence resonance energy transfer (FRET) process, and then the detection of tyrosinase activity can be achieved. The result demonstrated that the fluorescence intensity of N-GQDs was a linear correlation with the activity of tyrosinase. Wide detection linear ranges between 0.05 and 5 U/mL and high selectivity. The detection range of tyrosinase was 0.05 to 5 U/mL and LOD of 0.005 U/mL. According to the above, the fluorescence method established in this work could be successfully used for the trace analysis of tyrosinase and it was verified that KA is an inhibitor of tyrosinase.

5.
J Fluoresc ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869710

RESUMEN

In the fields of health and biology, fluorescent nanomaterials have emerged as highly potential and very useful candidates for use in biosensor applications. These typical highly powerful nanomaterials are carbon dots (CDs) and graphene quantum dots (GQDs) among many other metallic nanomaterials. In the context of medical biosensors, this review article investigates the techniques of synthesis, and many uses of these nanomaterials, the obstacles that they face, and the potential for their future. We cover the significance of fluorescent nanomaterials, their use in the medical field, as well as the several techniques of synthesis for CDs and GQDs, including ultrasonication, hydrothermal, electrochemical method, surface modification, and solvothermal. In addition, we also discuss their biomedical applications, which include biomolecule detection, disease diagnosis and examine the obstacles and prospective possibilities for development of ultra-bright, ultra-sensitive, and selective biosensors for use in in-vivo research.Fluorescent carbon dots and graphene quantum dots is synthesized by using several types of raw material and methods. These Carbon dots and graphene quantum dots are used in the medical field includes detection of biomaterials, detection of cancer, virus and mutation in DNA.

6.
J Fluoresc ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193952

RESUMEN

Fluorescence intensity and selective recognition ability are crucial factors in determining the analytical techniques for fluorescent probes. In this study, a core-shell fluorescent material, composed of silver nanoparticles@nitrogen-doped graphene quantum dots (Ag NPs@N/GQDs), was synthesised using mango leaves as the raw material through a thermal cracking method, resulting in strong fluorescence luminescence intensity. By employing noradrenaline as a template molecule and using a surface molecular imprinting technique, a molecularly imprinted membrane (MIP) was formed on the surface of the fluorescent material, that was subsequently eluted to obtain a highly specific, fluorescent probe capable of recognising noradrenaline. The probe captured various concentrations of noradrenaline using the MIP, which decreased the fluorescence intensity. Then a method for detecting trace amounts of noradrenaline was established. This method exhibited a linear range from 0.5 -700 pM with a detection limit of 0.154 pM. The proposed method was implemented in banana samples. Satisfactory recoveries were confirmed at four different concentrations. The method presented a relative standard deviation (RSD) of less than 5.0%.

7.
Anal Bioanal Chem ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795213

RESUMEN

An analytical method for the determination of imatinib (IMA, the primary treatment for chronic myeloid leukemia), based on the fluorescence properties of graphene quantum dots (GQDs), is reported in this work. The method is addressed to the analytical control of IMA in biological and pharmaceutical samples, due to the present interest in the control of the doses of this anticancer drug, as well as the therapeutic monitoring. The whole method involves the use of a solid-phase extraction (SPE) procedure, followed by an evaporation step, for the treatment of biological samples. For that, tC18 sorbent cartridges were used. After the sample treatment, the solution containing the analyte was mixed with an aqueous solution of GQDs at pH 7.2, and the fluorescent quenching of GQDs was measured. IMA was determined in the 10-250 µg L-1 range, with a limit of detection of 21 µg L-1 and a precision of 1.5% as relative standard deviation, measured in terms of reproducibility. The recovery for biological samples was in the 84-113% range.

8.
Anal Bioanal Chem ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795215

RESUMEN

A reliable nanotechnological sensing strategy, based on an S,N-co-doped graphene quantum dot (GQD) platform, has been developed to distinctly detect two key variants of vitamin D3, specifically the free (VD3) and the nanoencapsulated form (VD3Ms). For this purpose, food-grade vitamin D3 micelles were self-assembled using a low-energy procedure (droplet size: 49.6 nm, polydispersity index: 0.34, ζ-potential: -33 mV, encapsulation efficiency: 90 %) with an innovative surfactant mixture (Tween 60 and quillaja saponin). Herein, four fluorescent nanoprobes were also synthesized and thoroughly characterized: S,N-co-doped GQDs, α-cyclodextrin-GQDs, ß-cyclodextrin-GQDs, and γ-cyclodextrin-GQDs. The goal was to achieve a selective dual sensing strategy for free VD3 and VD3Ms by exploiting their distinctive quenching behaviors. Thus, the four nanosensors allowed the individual sensing of both targets to be performed (except α-CD-GQD for VD3Ms), but S,N-GQDs were finally selected due to selectivity and sensitivity (quantum yield, QY= 0.76) criteria. This choice led to a photoinduced electron transfer (PET) mechanism associated with static quenching, where differentiation was evidenced through a displayed 13-nm hypsochromic (blue) shift when interacting with VD3Ms. The reliability of this dual approach was demonstrated through an extensive evaluation of analytical performance characteristics. The feasibility and accuracy were proven in commercial food preparations and nutritional supplements containing declared nanoencapsulated and raw VD3, whose results were validated by a paired Student's t-test comparison with a UV-Vis method. To the best of our knowledge, this represents the first non-destructive analytical approach addressing the groundbreaking foodomic trend to distinctly detect different bioactive forms of vitamin D3, while also preserving their native nanostructures as a chemical challenge, thus providing reliable information about their final stability and bioavailability.

9.
Mikrochim Acta ; 191(7): 418, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914884

RESUMEN

An electrochemical immunoassay system was developed to detect CA-125 using a glassy carbon electrode (GCE) modified with MXene, graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The combined MXene-GQD/AuNPs modification displayed advantageous electrochemical properties due to the synergistic effects of MXene, GQDs, and AuNPs. The MXene-GQD composite in the modified layer provided strong mechanical properties and a large specific surface area. Furthermore, the presence of AuNPs significantly improved conductivity and facilitated the binding of anti-CA-125 on the modified GCE, thereby enhancing sensitivity. Various analytical techniques such as FE-SEM and EDS were utilized to investigate the structural and morphological characteristics as well as the elemental composition. The performance of the developed immunosensor was assessed using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). Under optimized conditions in a working potential range of -0.2 to 0.6 V (vs. Ag/AgCl), the sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were determined to be 315.250 µA pU.mL-1/cm2, 0.1 to 1 nU/mL, 0.075 nU/mL, and 0.9855, respectively. The detection of CA-125 in real samples was investigated using the developed immunoassay platform, demonstrating satisfactory results including excellent selectivity and reproducibility.


Asunto(s)
Antígeno Ca-125 , Técnicas Electroquímicas , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Neoplasias Ováricas , Puntos Cuánticos , Antígeno Ca-125/sangre , Antígeno Ca-125/análisis , Oro/química , Nanopartículas del Metal/química , Humanos , Neoplasias Ováricas/sangre , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Inmunoensayo/métodos , Femenino , Puntos Cuánticos/química , Grafito/química , Anticuerpos Inmovilizados/inmunología , Técnicas Biosensibles/métodos , Electrodos , Proteínas de la Membrana
10.
Mikrochim Acta ; 191(4): 190, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460000

RESUMEN

Golgi protein 73 (GP73) is a new serum marker associated with early diagnosis and postoperative assessment of hepatocellular carcinoma (HCC). Herein, an electrochemical/fluorescence dual-signal biosensor was designed for determination of GP73 based on molybdenum disulfide/ferrocene/palladium nanoparticles (MoS2-Fc-PdNPs) and nitrogen-doped graphene quantum dots (NGQDs). GP73 aptamer (Apt) was labeled with NGQDs to form the NGQDs-Apt fluorescence probe. MoS2-Fc-PdNPs served not only as the fluorescence quencher but also as electrochemical enhancer. The sensing platform (NGQDs-Apt/MoS2-Fc-PdNPs) was formed based on the fluorescence resonance energy transfer (FRET) mechanism. In the presence of GP73, the specific binding of NGQDs-Apt to GP73 interrupted FRET, restoring the fluorescence of NGQDs-Apt at λex/em = 348/438 nm and enhancing the oxidation current of Fc in MoS2-Fc-PdNPs at 0.04 V through differential pulse voltammetry (DPV). Under the optimal conditions, the DPV current change and fluorescence recovery have a good linear relationship with GP73 concentration from 1.00 to 10.0 ng/mL. The calibration equation for the fluorescence mode was Y1 = (0.0213 ± 0.00127)X + (0.0641 ± 0.00448) and LOD was 0.812 ng/mL (S/N = 3). The calibration equation of the electrochemical mode was Y2 = (3.41 ± 0.111)X + (1.62 ± 0.731), and LOD of 0.0425 ng/mL (S/N = 3). The RSDs of fluorescence mode and electrochemical mode after serum detection were 1.62 to 5.21% and 0.180 to 6.62%, respectively. By combining the electrochemical and fluorescence assay, more comprehensive and valuable information for GP73 was provided. Such dual-mode detection platform shows excellent reproducibility, stability, and selectivity and has great application potential.


Asunto(s)
Carcinoma Hepatocelular , Disulfuros , Grafito , Neoplasias Hepáticas , Nanopartículas del Metal , Puntos Cuánticos , Humanos , Molibdeno , Paladio , Nitrógeno , Reproducibilidad de los Resultados , Metalocenos
11.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731505

RESUMEN

The one-pot synthesis of N-doped graphene quantum dots (GQDs), capped with a positively charged polyamine (trien), has been realized through a microwave-assisted pyrolysis on solid L-glutamic acid and trien in equimolar amounts. The resulting positively charged nanoparticles are strongly emissive in aqueous solutions and are stable for months. The interaction with the anionic tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) has been investigated at neutral and mild acidic pH using a combination of UV/vis absorption spectroscopy together with static and time-resolved fluorescence emission. At pH = 7, the experimental evidence points to the formation of a supramolecular adduct mainly stabilized by electrostatic interactions. The fluorescence emission of the porphyrin is substantially quenched while GQDs remain still emissive. On decreasing the pH, protonation of TPPS4 leads to formation of porphyrin J-aggregates through the intermediacy of the charged quantum dots.

12.
Molecules ; 29(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338360

RESUMEN

Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.


Asunto(s)
Antineoplásicos , Grafito , Hipertermia Inducida , Nanopartículas , Neoplasias , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Grafito/química , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina , Nanopartículas/química , Fototerapia , Carbono/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Disulfuros , Microambiente Tumoral
13.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543000

RESUMEN

In recent years, oxygen vacancy (VO) engineering has become a research hotspot in the field of photocatalysis. Herein, an efficient GQDs/BiOCl-VO heterojunction photocatalyst was fabricated by loading graphene quantum dots (GQDs) onto BiOCl nanosheets containing oxygen vacancies. ESR and XPS characterizations confirmed the formation of oxygen vacancy. Combining experimental analysis and DFT calculations, it was found that oxygen vacancy promoted the chemical adsorption of O2, while GQDs accelerated electron transfer. Benefiting from the synergistic effect of oxygen vacancy, GQDs, and dye sensitization, the as-prepared GQDs/BiOCl-VO sample exhibited improved efficiency for RhB degradation under visible-light irradiation. A 2 wt% GQDs/BiOCl-VO composite effectively degraded 98% of RhB within 20 min. The main active species were proven to be hole (h+) and superoxide radical (·O2-) via ESR analysis and radical trapping experiments. This study provided new insights into the effective removal of organic pollutants from water by combining defect engineering and quantum dot doping techniques in heterojunction catalysts.

14.
Adv Funct Mater ; 33(48)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38144446

RESUMEN

CRISPR-Cas9 is a programmable gene editing tool with a promising potential for cancer gene therapy. This therapeutic function is enabled in the present work via the non-covalent delivery of CRISPR ribonucleic protein (RNP) by cationic glucosamine/PEI-derived graphene quantum dots (PEI-GQD) that aid in overcoming physiological barriers and tracking genes of interest. PEI-GQD/RNP complex targeting the TP53 mutation overexpressed in ~50% of cancers successfully produces its double-stranded breaks in solution and in PC3 prostate cancer cells. Restoring this cancer "suicide" gene can promote cellular repair pathways and lead to cancer cell apoptosis. Its repair to the healthy form performed by simultaneous PEI-GQD delivery of CRISPR RNP and a gene repair template leads to a successful therapeutic outcome: 40% apoptotic cancer cell death, while having no effect on non-cancerous HeK293 cells. The translocation of PEI-GQD/RNP complex into PC3 cell cytoplasm is tracked via GQD intrinsic fluorescence, while EGFP-tagged RNP is detected in the cell nucleus, showing the successful detachment of the gene editing tool upon internalization. Using GQDs as non-viral delivery and imaging agents for CRISPR-Cas9 RNP sets the stage for image-guided cancer-specific gene therapy.

15.
Small ; 19(20): e2206813, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732883

RESUMEN

One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.


Asunto(s)
Antineoplásicos , Quitosano , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Quitosano/química , Hidrogeles , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/farmacología , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Liberación de Fármacos , Portadores de Fármacos/química
16.
Small ; 19(31): e2205957, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36610043

RESUMEN

The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.

17.
Small ; 19(40): e2207626, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37309299

RESUMEN

Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood-brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic-based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time-dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD-like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid ß (Aß) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti-inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.


Asunto(s)
Enfermedad de Alzheimer , Quitosano , Grafito , Nanopartículas , Puntos Cuánticos , Ratas , Animales , Enfermedad de Alzheimer/metabolismo , Quitosano/química , Grafito/uso terapéutico , Péptidos beta-Amiloides , Microfluídica , Portadores de Fármacos/química , Nanopartículas/química
18.
Small ; 19(18): e2207227, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36720006

RESUMEN

Developing efficient and robust metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction (ORR) is of great significance for the application of hydrogen-oxygen fuel cells and metal-air batteries. Herein, a coordination engineering strategy is developed to improve the ORR kinetics and stability of cobalt-nitrogen-carbon (Co-N-C) electrocatalysts by grafting the oxygen-rich graphene quantum dots (GQDs) onto the zeolite imidazole frameworks (ZIFs) precursors. The optimized oxygen-rich GQDs-functionalized Co-N-C (G-CoNOC) electrocatalyst demonstrates an increased mass activity, nearly two times higher than that of pristine defective Co-N-C electrocatalyst, and retains a stability of 90.0% after 200 h, even superior to the commercial Pt/C. Comprehensive investigations demonstrate that the GQDs coordination can not only decrease carbon defects of Co-N-C electrocatalysts, improving the electron transfer efficiency and resistance to the destructive free radicals from H2 O2 , but also optimize the electronic structure of atomic Co active site to achieve a desired adsorption energy of OOH- , leading to enhanced ORR kinetics and stability by promoting further H2 O2 reduction, as confirmed by theoretical calculations and experimental results. Such a coordination engineering strategy provides a new perspective for the development of highly active noble-metal-free electrocatalysts for ORR.

19.
Small ; 19(33): e2301275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081376

RESUMEN

Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+ , GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.

20.
Small ; 19(37): e2301177, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37144438

RESUMEN

Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.


Asunto(s)
Grafito , Puntos Cuánticos , Humanos , Antibacterianos/farmacología , Grafito/farmacología , Transformación Bacteriana , Farmacorresistencia Microbiana/genética , Escherichia coli/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda