Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 5.700
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428395

RESUMEN

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Asunto(s)
Bacterias , Tracto Gastrointestinal , Metagenoma , Plásmidos , Humanos , Bacterias/genética , Bacteroidetes/genética , Heces/microbiología , Plásmidos/genética
2.
Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38981480

RESUMEN

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

3.
Cell ; 186(14): 3111-3124.e13, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37348505

RESUMEN

The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Eucariontes , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica
4.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563663

RESUMEN

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Lactante , Embarazo , Microbioma Gastrointestinal/genética , Microbiota/genética , Madres , Lactancia Materna , Heces , Secuencias Repetitivas Esparcidas
5.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931082

RESUMEN

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , Transgenes
6.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051369

RESUMEN

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Asunto(s)
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animales , Ácidos y Sales Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran , Farmacorresistencia Microbiana/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Técnicas de Transferencia de Gen , Vida Libre de Gérmenes , Inflamación/patología , Intestinos/patología , Masculino , Metaboloma/genética , Metagenómica , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional/genética , Mutación/genética , ARN Ribosómico 16S/genética , Transcripción Genética
7.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120663

RESUMEN

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Polisacáridos/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Aminoácidos de Cadena Ramificada/metabolismo , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Butiratos/química , Butiratos/farmacología , Coenzima A Transferasas/química , Coenzima A Transferasas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Variación Genética/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metaboloma/efectos de los fármacos , Metaboloma/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
8.
Annu Rev Biochem ; 90: 817-846, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823652

RESUMEN

Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.


Asunto(s)
Liasas de Carbono-Carbono/metabolismo , Microbioma Gastrointestinal/fisiología , Ácidos Sulfónicos/metabolismo , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Alcanosulfonatos/metabolismo , Anaerobiosis , Bacterias/metabolismo , Liasas de Carbono-Carbono/química , Glicina/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Ácido Isetiónico/metabolismo , Microbiota/fisiología , Taurina/metabolismo
9.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767757

RESUMEN

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Asunto(s)
Trastorno Autístico/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Trastorno Autístico/diagnóstico , Conducta , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Fenotipo , Filogenia , Especificidad de la Especie
10.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453153

RESUMEN

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Recuento de Colonia Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad , Ratones Endogámicos C57BL , Sulfuros/metabolismo , Taurina/farmacología
11.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794144

RESUMEN

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal , Transferencia de Gen Horizontal , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Heces/microbiología , Genoma Bacteriano , Humanos , Filogenia , Población Rural , Análisis de Secuencia de ADN , Población Urbana , Secuenciación Completa del Genoma
12.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33838112

RESUMEN

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana , Heces/microbiología , Femenino , Inestabilidad Genómica , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Adulto Joven
13.
Cell ; 181(7): 1661-1679.e22, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32526207

RESUMEN

The human gut microbiome harbors hundreds of bacterial species with diverse biochemical capabilities. Dozens of drugs have been shown to be metabolized by single isolates from the gut microbiome, but the extent of this phenomenon is rarely explored in the context of microbial communities. Here, we develop a quantitative experimental framework for mapping the ability of the human gut microbiome to metabolize small molecule drugs: Microbiome-Derived Metabolism (MDM)-Screen. Included are a batch culturing system for sustained growth of subject-specific gut microbial communities, an ex vivo drug metabolism screen, and targeted and untargeted functional metagenomic screens to identify microbiome-encoded genes responsible for specific metabolic events. Our framework identifies novel drug-microbiome interactions that vary between individuals and demonstrates how the gut microbiome might be used in drug development and personalized medicine.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Microbioma Gastrointestinal/fisiología , Microbiota/efectos de los fármacos , Adulto , Animales , Bacterias/clasificación , Biomarcadores Farmacológicos/metabolismo , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Voluntarios Sanos , Humanos , Masculino , Metagenoma/genética , Metagenómica/métodos , Ratones , Ratones Endogámicos C57BL , Microbiota/genética , Preparaciones Farmacéuticas/metabolismo , Medicina de Precisión/métodos , ARN Ribosómico 16S/genética
14.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31813624

RESUMEN

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Nociceptores/fisiología , Animales , Epitelio/metabolismo , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/microbiología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Ganglios Linfáticos Agregados/inervación , Ganglios Linfáticos Agregados/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
15.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150625

RESUMEN

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Síntomas Conductuales/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Bacterias , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microbiota , Factores de Riesgo
16.
Cell ; 167(4): 1125-1136.e8, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814509

RESUMEN

Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP.


Asunto(s)
Citocinas/inmunología , Microbioma Gastrointestinal , Inflamación/inmunología , Microbiota , Adolescente , Adulto , Anciano , Bacterias/clasificación , Bacterias/inmunología , Sangre/inmunología , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Femenino , Hongos/clasificación , Hongos/inmunología , Interacción Gen-Ambiente , Proyecto Genoma Humano , Humanos , Infecciones/inmunología , Infecciones/microbiología , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad
17.
Annu Rev Microbiol ; 77: 363-379, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307857

RESUMEN

The gut microbiome is a dense and metabolically active consortium of microorganisms and viruses located in the lower gastrointestinal tract of the human body. Bacteria and their viruses (phages) are the most abundant members of the gut microbiome. Investigating their biology and the interplay between the two is important if we are to understand their roles in human health and disease. In this review, we summarize recent advances in resolving the taxonomic structure and ecological functions of the complex community of phages in the human gut-the gut phageome. We discuss how age, diet, and geography can all have a significant impact on phageome composition. We note that alterations to the gut phageome have been observed in several diseases such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, and we evaluate whether these phageome changes can directly or indirectly contribute to disease etiology and pathogenesis. We also highlight how lack of standardization in studying the gut phageome has contributed to variation in reported results.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Humanos , Viroma , Bacteriófagos/genética
18.
Mol Cell ; 79(1): 43-53.e4, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32464093

RESUMEN

The physiological role of immune cells in the regulation of postprandial glucose metabolism has not been fully elucidated. We have found that adipose tissue macrophages produce interleukin-10 (IL-10) upon feeding, which suppresses hepatic glucose production in cooperation with insulin. Both elevated insulin and gut-microbiome-derived lipopolysaccharide in response to feeding are required for IL-10 production via the Akt/mammalian target of rapamycin (mTOR) pathway. Indeed, myeloid-specific knockout of the insulin receptor or bone marrow transplantation of mutant TLR4 marrow cells results in increased expression of gluconeogenic genes and impaired glucose tolerance. Furthermore, myeloid-specific Akt1 and Akt2 knockout results in similar phenotypes that are rescued by additional knockout of TSC2, an inhibitor of mTOR. In obesity, IL-10 production is impaired due to insulin resistance in macrophages, whereas adenovirus-mediated expression of IL-10 ameliorates postprandial hyperglycemia. Thus, the orchestrated response of the endogenous hormone and gut environment to feeding is a key regulator of postprandial glycemia.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Hiperglucemia/patología , Insulina/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/análisis , Gluconeogénesis/genética , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Interleucina-10/fisiología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Periodo Posprandial , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/fisiología
19.
Immunol Rev ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890777

RESUMEN

The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.

20.
Annu Rev Microbiol ; 76: 579-596, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671535

RESUMEN

The longstanding interactions between mammals and their symbionts enable thousands of mammal species to consume herbivorous diets. The microbial communities in mammals degrade both plant fiber and toxins. Microbial toxin degradation has been repeatedly documented in domestic ruminants, but similar work in wild mammals is more limited due to constraints on sampling and manipulating the microbial communities in these species. In this review, we briefly describe the toxins commonly encountered in mammalian diets, major classes of biotransformation enzymes in microbes and mammals, and the gut chambers that house symbiotic microbes. We next examine evidence for microbial detoxification in domestic ruminants before providing case studies on microbial toxin degradation in both foregut- and hindgut-fermenting wild mammals. We end by discussing species that may be promising for future investigations, and the advantages and limitations of approaches currently available for studying degradation of toxins by mammalian gut microbes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Herbivoria , Rumiantes
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda