Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Emerg Med ; 24(1): 94, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816720

RESUMEN

BACKGROUND: Rainfall-induced floods represented 70% of the disasters in Japan from 1985 to 2018 and caused various health problems. To improve preparedness and preventive measures, more information is needed on the health problems caused by heavy rain. However, it has proven challenging to collect health data surrounding disasters due to various inhibiting factors such as environmental hazards and logistical constraints. In response to the Kumamoto Heavy Rain 2020, Emergency Medical Teams (EMTs) used J-SPEED (Japan-Surveillance in Post Extreme Emergencies and Disasters) as a daily reporting tool, collecting patient data and sending it to an EMTCC (EMT Coordination Cell) during the response. We performed a descriptive epidemiological analysis using J-SPEED data to better understand the health problems arising from the Kumamoto Heavy Rain 2020 in Japan. METHODS: During the Kumamoto Heavy Rain 2020 from July 5 to July 31, 2020, 79 EMTs used the J-SPEED form to submit daily reports to the EMTCC on the number and types of health problems they treated. We analyzed the 207 daily reports, categorizing the data by age, gender, and time period. RESULTS: Among the 816 reported consultations, women accounted for 51% and men accounted for 49%. The majority of patients were elderly (62.1%), followed by adults (32.8%), and children (5%). The most common health issues included treatment interruption (12.4%), hypertension (12.0%), wounds (10.8%), minor trauma (9.6%), and disaster-related stress symptoms (7.4%). Consultations followed six phases during the disaster response, with the highest occurrence during the hyperacute and acute phases. Directly disaster-related events comprised 13.9% of consultations, indirectly related events comprised 52.0%, and unrelated events comprised 34.0%. As the response phases progressed, the proportions of directly and indirectly related events decreased while that of unrelated events increased. CONCLUSION: By harnessing data captured by J-SPEED, this research demonstrates the feasibility of collecting, quantifying, and analyzing data using a uniform format. Comparison of the present findings with those of two previous analyses of J-SPEED data from other disaster scenarios that varied in time, location, and/or disaster type showcases the potential to use analysis of past experiences to advancing knowledge on disaster medicine and disaster public health.


Asunto(s)
Lluvia , Humanos , Femenino , Masculino , Japón , Adulto , Persona de Mediana Edad , Anciano , Niño , Adolescente , Preescolar , Lactante , Adulto Joven , Desastres , Anciano de 80 o más Años , Servicios Médicos de Urgencia/estadística & datos numéricos , Inundaciones , Planificación en Desastres , Necesidades y Demandas de Servicios de Salud , Recién Nacido
2.
Tohoku J Exp Med ; 256(2): 175-185, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236809

RESUMEN

Floods due to heavy rains or typhoons are frequent annual hazards in Japan. This study aims to reduce disaster fatalities and contribute to disaster risk reduction. This retrospective observational study analyzed fatalities caused by heavy rains or typhoons. In Japan, 578 fatalities, related to seven occurrences of heavy rains and 16 typhoons, occurred between 2016 and 2020. Moreover, 13,195 houses collapsed due to hazards. Furthermore, 334 (73.2%) of the 456 fatalities were > 60 years old. Heavy rains caused more local area destruction due to floods and landslides than typhoons although wind- and disaster-related mortalities were found to be caused by typhoons. Human damage was eminent in older people because of their vulnerabilities and possibly dangerous behavior. Many fatalities were due to floods (46.9%) and landslides (44.1%). Indoor and outdoor mortalities due to heavy rains or typhoons were 157 (55.9%) and 124 (44.1%), respectively, and 24 (21.8%) of 124 outdoor mortalities occurred in vehicles. The number of recent flood mortalities in Japan correlates with the number of destroyed houses. Analyzing the victim's locations in the 2020 Kumamoto Heavy Rain using hazard and inundation maps suggested the difficulty of ensuring the safety of people living in dangerous areas. This study showed the characteristics of flood damage by heavy rains and typhoons in Japan and reports that flood damage is increasing because of the hazard size and community aging. Disaster risk reduction, disaster education, and evacuation safety plans for the elderly using hazard maps were important for strengthening disaster resilience.


Asunto(s)
Tormentas Ciclónicas , Desastres , Anciano , Inundaciones , Humanos , Japón/epidemiología , Persona de Mediana Edad , Lluvia
3.
Sci Total Environ ; 912: 169422, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38135072

RESUMEN

The increase in extreme heavy rain due to climate change is a critical factor in the fate of urban and agricultural pollutants in aquatic system. Nutrients, including NO3- and PO43-, are transported with surface and seepage waters into rivers, lakes and aquifers and can eventually lead to algal blooms. δ15N-NO3-, δ18O-NO3-, and δ11B combined with hydrogeochemical and microbial data for groundwater and surface water samples were interpreted to evaluate the fate of nutrients in a riverside area around weirs in Daegu, South Korea. Most of the ions showed similar concentrations in the groundwater samples before and after heavy rain while concentrations of major ions in surface water samples were diluted after heavy rain. However, Si, PO43-, Zn, Ce, La, Pb, Cu and a number of waterborne pathogens increased in surface water after heavy rain. The interpretation of δ11B, δ15N-NO3-, and δ18O-NO3- values using a Bayesian mixing model revealed that sewage and synthetic fertilizers were the main sources of contaminants in the groundwater and surface water samples. δ18O and SiO2 interpreted using the Bayesian mixing model indicated that the groundwater component in the surface water increased from 4.4 % to 17.9 % during the wet season. This is consistent with numerical simulation results indicating that the direct surface runoff and the groundwater baseflow contributions to the river system had also increased 6.4 times during the wet season. The increase in proteobacteria and decrease of actinobacteria in the surface water samples after heavy rain were also consistent with an increase of surface runoff and an increased groundwater component in the surface water. This study suggests that source apportionment based on chemical and multi-isotope data combined with numerical modeling approaches can be useful for identifying main hydrological and geochemical processes in riverside areas around weirs and can inform suggestions of effective methods for water quality management.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Isótopos de Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Teorema de Bayes , Dióxido de Silicio , Nitratos/análisis , Agua Subterránea/microbiología , Lluvia , China
4.
Sci Total Environ ; 946: 174067, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908608

RESUMEN

Heavy rainfall and flooding disasters are increasing due to global warming. A clear understanding of the mechanism of heavy rain and floods is the basic premise of disaster risk management. However, most previous studies emphasized more on the single anomalous signal from the average state in the whole season, which may neglect the combined influence of multiple signals in the ocean-atmosphere and differential characteristics of anomalous signals at different periods. Here, our study aimed to reveal the possible influence mechanism of heavy rain and floods in the middle and lower reaches of the Yangtze River Basin (MLRYRB) by systematically analyzing the monthly-scale and daily-scale ocean-atmosphere anomaly patterns in the preceding periods of heavy rainfall and flooding events. The results showed that heavy rainfall and flooding events were highly likely to occur in the region one month after El Niño decayed, with the flooding intensity in June having the negative correlation with the sea ice concentration anomaly in the Arctic with a lag of about 5 months (150 days). Besides, North Atlantic Oscillation, Western Pacific subtropical high, blocking, East Asian subtropical westerly jet, and the water vapor fluxes from the Arabian Sea and western Pacific Ocean could be used as the anomalous signals inducing heavy rain and floods. The daily-scale conceptual model inducing heavy rainfall and flooding events was built based on the patterns of all anomalous signals, which detailed the possible impact mechanism of heavy rain and floods in the region. By making targeted forecasts of anomalous signals and using this information in water resources planning and management based on climate mechanisms, it will have a significant impact on water management in the country.

5.
Environ Sci Pollut Res Int ; 30(24): 64971-64981, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37071359

RESUMEN

Non-point source pollution caused by rainfall runoff is an important pollution source for river water. To explore the impact of heavy rain on urban river water environments, this paper studied the changes in carbon, nitrogen, and phosphorus levels, composition, and structure in the river water of Kaifeng, China, during the heavy rain in July 2021. The results showed that the concentrations of different forms of carbon, nitrogen, and phosphorus all increased under the effect of the heavy rain. The increase of phosphorus in the river was the largest, and that of carbon was the smallest. The most significant pollution from carbon, nitrogen, and phosphorus occurred in the HJ River. Colored dissolved organic matter (CDOM) was present in the form of macromolecules after the rain, and the degree of humification was deeper compared with before the rain. But heavy rain did not affect the CDOM composition in urban rivers. The spectral slope (SR) and the absorption coefficient at 240 nm to 420 nm (E2/E4) values showed that the CDOM was dominated by exogenous input after the rain, with endogenous pollution again becoming the main factor one week after the rain.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Monitoreo del Ambiente/métodos , Ríos/química , Nitrógeno/análisis , Carbono , Contaminantes Químicos del Agua/análisis , Calidad del Agua , China , Materia Orgánica Disuelta , Lluvia , Agua
6.
Animals (Basel) ; 13(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37048470

RESUMEN

Environmental exposure during confinement and feeding strategy affects cow behavior, nutrient utilization, and performance. Milk production and composition, body condition score, non-esterified fatty acids, and beta-hydroxybutyrate were determined during a full lactation in cows submitted to (a) grazing + partial confinement in outdoor soil-bedded pens with shade structures (OD-GRZ); (b) grazing + partial confinement in a compost-bedded pack barn with cooling capacity (CB-GRZ); or (c) total confinement (same facilities as CB-GRZ) and fed TMR ad libitum (CB-TMR). Autumn (ACS) and spring (SCS) calving season cows were used for each treatment, except for CB-TMR (only SCS). In ACS, treatments did not differ in any variable, possibly due to mild weather. In SCS, milk production was higher in CB-TMR than CB-GRZ, which in turn produced more milk than OD-GRZ. Differences coincided with heat waves and/or heavy rains (similar grazing conditions and mixed ration DM intake). Milk fat, protein and lactose yield, protein content, and BCS were higher in CB-TMR, without differences between CB-GRZ and OD-GRZ. Cows in OD-GRZ had impaired energy metabolism. Under moderately unfavorable environmental conditions (ACS), when well-managed, OD-GRZ systems could equate to the productive response of CB-GRZ. However, in worse climatic conditions (SCS), performance could be compromised, especially when compared to TMR systems.

7.
Environ Sci Pollut Res Int ; 30(21): 61145-61159, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37046165

RESUMEN

Benzene , toluene, ethylbenzene, and xylenes (BTEX) BTEX molecules are toxic components, ubiquitous in the environment, often found in concentrations- a few orders of magnitude higher than the well-studied PAHs levels. This fact is demonstrated in either crude oil, fuels, water, and air samples. BTEX studies focus mainly on the airborne levels of these molecules, while their waterborne presence is understudied. In this study, BTEX levels were assessed at Lake Kinneret, Israel. As a result, 0-1.5 ppb of BTEX was recorded in five stations (2021-2022). Elevated BTEX levels (3-10 ppb) were recorded at the northern rivers nourishing this lake, implying the existence of remote polluting sources. Transect air samplings of BTEX conducted at the lake next to the bathing season of 2021 revealed airborne BTEX levels between 0.8 and 10 µg/m3, peaking up close to the bathing season, yet inconsistent with the BTEX water level trend. Lake water samples collected next to Tiberias city outfalls following the "Carmel" rainstorm showed elevated concentrations of BTEX up to 35 ppb and PAHs up to 0.47 ppb with an urban isotopic signal. The remote station's PAHs levels were less than one order of magnitude, with a distinct rural isotopic signal. Additionally, a human-specific microbial marker revealed increased sewer contributions at some of the urbansites. The results of this study show that a wide area dispersion of low atmospheric BTEX levels exists in the lake's perimeter. The dispersion rate is most likely influenced by season-based factors, e.g., motors and biomass fires. The unstudied waterborne BTEX levels in this lake are influenced by rivers, city runoff, and other yet unknown factors that may contribute to the sedimentation of these components. This process may result in a chronic pollution state. Despite the BTEX's medium-low solubility and high volatility, its under-evaluated waterborne transportation may lead to high toxic levels following bioaccumulation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Benceno/análisis , Xilenos/análisis , Tolueno/análisis , Estaciones del Año , Lagos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Derivados del Benceno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Agua
8.
Prehosp Disaster Med ; : 1-7, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225205

RESUMEN

INTRODUCTION: Rainfall-induced floods and landslides accounted for 20.7% of all disaster events in Japan from 1985 through 2018 and caused a variety of health problems, both directly and indirectly, including injuries, infectious diseases, exacerbation of pre-existing medical conditions, and psychological issues. More evidence of health problems caused by floods or heavy rain is needed to improve preparedness and preventive measures; however, collecting health data surrounding disaster events is a major challenge due to environmental hazards, logistical constraints, political and economic issues, difficulties in communication among stakeholders, and cultural barriers. In response to the West Japan Heavy Rain in July 2018, Emergency Medical Teams (EMTs) used Japan - Surveillance in Post-Extreme Emergencies and Disasters (J-SPEED) as a daily reporting template, collecting data on the number and type of patients they treated and sending it to an EMT coordination cell (EMTCC) during the response. STUDY OBJECTIVE: The aim of the study was to conduct a descriptive epidemiology study using J-SPEED data to better understand the health problems during floods and heavy rain disasters. METHODS: The number and types of health problems treated by EMTs in accordance with the J-SPEED (Ver 1.0) form were reported daily by 85 EMTs to an EMTCC, where data were compiled during the West Japan Heavy Rain from July 8 through September 11, 2018. Reported items in the J-SPEED form were analyzed by age, gender, area (prefecture), and time period. RESULTS: The analysis of J-SPEED data from the West Japan Heavy Rain 2018 revealed the characteristics of a total of 3,617 consultations with the highest number of consultations (2,579; 71.3%) occurring between Day 5 and Day 12 of the 65-day EMT response. During the response period, skin disease was the most frequently reported health event (17.3%), followed by wounds (14.3%), disaster stress-related symptoms (10.0%), conjunctivitis (6.3%), and acute respiratory infections (ARI; 5.4%). CONCLUSION: During the response period, skin disease was the most frequently reported health event, followed by wounds, stress, conjunctivitis, and ARIs. The health impacts of a natural disaster are determined by a variety of factors, and the current study's findings are highly context dependent; however, it is expected that as more data are gathered, the consistency of finding will increase.

9.
Waste Manag ; 113: 280-293, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32559698

RESUMEN

In Japan, approximately 64% of municipal solid waste incineration bottom ash (MSWI BA) is landfilled. Because landfills in Japan are operated without capping, the landfill body is directly exposed to climatic events. Increased frequency of heavy rain is predicted to affect the chemical stabilization of bottom ash (BA) landfill, as rainwater seeps into and interacts with landfill components. This study examined the effect of normal rainfall (15 mm/h) and heavy rainfall (25, 50, and 100 mm/h) events on the leaching behavior of ions (Cl-, Na+, K+, and Ca2+) and total organic carbon (TOC) in BA (<10 mm particle size) using a percolation column test. The results showed the decreased leaching of leachate components after heavy rainfall and increased leaching after normal rainfall. In addition, the pH fluctuated around 11-12 after heavy rainfall but decreased to 7-9 after normal rainfall. The carbonation of the leachate and BA layers appears to be the main factor in lowering the pH value. Changes in the TOC and ion concentrations can be explained by dissolution, dilution, and the contact time of water molecules and BA particles. The data showed that the cumulative TOC and ion release rates were not affected by heavy rain intensities. The release rate of leachate components during normal rainfall was higher than that in heavy rainfall in all the scenarios. Significant correlations were found between the leachate components (TOC, Cl-, Na+, K+, and Ca2+ concentrations) and rainfall variation.


Asunto(s)
Metales Pesados/análisis , Eliminación de Residuos , Carbono , Ceniza del Carbón , Incineración , Japón , Lluvia , Residuos Sólidos , Instalaciones de Eliminación de Residuos
10.
Huan Jing Ke Xue ; 41(11): 4970-4980, 2020 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-33124240

RESUMEN

To understand the quantitative effect of heavy rain on nitrogen and phosphorus pollution in river-net plain, daily observations of nutrient concentrations in two rivers, flowing into Lake Taihu, were conducted from 1st September, 2017 to 31st August, 2019. The daily rainfall was recorded by auto-recording meteorological stations located on the two rivers and the Taihu Laboratory for Lake Ecosystem Research. Intensive sampling in different sections of the two rivers during Super Typhoon Lekima was also conducted in August 2019. Using these datasets, the influence of heavy rainfall on various forms of nitrogen and phosphorus concentrations in the rivers, and its environmental effects, were analyzed. The results showed that 16 heavy rainfall events (19 d) were observed in two years, 50% of which occurred in the summer season. In addition, heavy rainfall accounted for as much as 41.33% of the total rainfall over the entire year. After the period of heavy rainfall, the concentrations of various forms of nitrogen and phosphorus increased, and the particulate P generally exhibited the fastest response, usually peaking on the day of heavy rainfall. In contrast, the peaks of N were delayed for 2-5 days with the occurrence of heavy rain. In general, the duration of the increase in the concentration of nutrients in the study river caused by heavy rainfall was short (usually 1-2 days), and sometimes was lower than the concentration before the rains. The Dapu River exhibited a slower response to heavy rains than the Yincun River because it has a larger and longer catchment area than the Dapu River. In addition, the effect of heavy rain on N and P concentrations was also strongly influenced by the land-use situation around the river basin. The increase of nitrogen in the reach, affected by agricultural non-point sources, was dominated by granular nitrogen, and the increase of nitrogen in the reach affected by urban non-point sources was dominated by dissolved nitrogen. The increase of phosphorus was dominated by granular phosphorus in the entire process. The conclusions of this study are as follows:In the plain river network area, the fluctuations of nitrogen and phosphorus concentrations in the river water body caused by heavy rainfall are small, and the response of various forms of nitrogen and phosphorus are significantly affected by the local environmental background. Therefore, the water quality generally exhibited limited variation. Due to the large proportion of water entering the lake during heavy rainfall events, a high level of the nutrient loading was also observed, and the occurrence of heavy rainfall was occasional. The short-term effect of heavy rainfall on the nitrogen and phosphorus loading entering the lake in the river channel in the plain river network area is therefore, also significant, and requires further investigation.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
11.
Heliyon ; 6(5): e03942, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32490225

RESUMEN

Southwestern Japan suffered its worst rains in 2018 causing floods and mudslides, claiming 225 lives and forcing millions for evacuations. Referred as "Heisei san-ju-nenshichi-gatsugou", the disaster was the result of incessant precipitation caused by the interaction of typhoon "Prapiroon" with the seasonal rain front "Baiu". The present epidemiological study aims to investigate disaster-induced health issues in 728 residents of Innoshima island in the Hiroshima Prefecture by comparing their clinical data in pre-disaster (2017) and disaster-hit (2018) years which was obtained from annual health screening. Comparison of data showed a significant increase in the urine protein concentration in victims following the disaster. Probing further into the household conditions, showed that a total of 59,844 households were affected with water outage during the heavy rains, which was accompanied by severe damage of sewerage pipelines with complete recovery process taking two weeks. This two weeks of the crisis forced victims to refrain from using restrooms which in turn led to infrequent urination, thereby explaining the increased urine protein concentration in victims following the disaster. The present study addresses the acute health implications caused by the water crisis and serves as a precautionary measure for disaster management council to provide enhanced aftercare services in victims in further events of natural disasters.

12.
Intern Med ; 58(19): 2831-2834, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31243196

RESUMEN

We herein report the case of a 62-year-old man diagnosed with Legionella pneumonia while engaged in recovery work in a flooded area after the Heavy Rain Event of July 2018 in Japan. The patient was intubated and maintained on mechanical ventilation and continuous hemodiafiltration. He was also administered antimicrobial therapy with ciprofloxacin and azithromycin. After 53 days in the hospital, he was discharged. It is important to recognize the risk of Legionella infection and to take measures to prevent it during recovery work that involves exposure to water and soil after a flood disaster.


Asunto(s)
Antibacterianos/uso terapéutico , Hemodiafiltración/métodos , Enfermedad de los Legionarios/etiología , Desastres Naturales , Lluvia , Respiración Artificial/métodos , Humanos , Japón , Legionella pneumophila/aislamiento & purificación , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/terapia , Masculino , Persona de Mediana Edad
13.
Osong Public Health Res Perspect ; 4(3): 140-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24159545

RESUMEN

OBJECTIVES: Allergic disease may be increased by climate change. Recent reports have shown that typhoon and heavy rain increase allergic disease locally by concentration of airborne allergens of pollen, ozone, and fungus, which are causes of allergic disease. The objective of this study was to determine whether typhoon and heavy rain increase allergic disease in Korea. METHODS: This study included allergic disease patients of the area declared as a special disaster zone due to storms and heavy rains from 2003 to 2009. The study used information from the Korea Meteorological Administration, and from the National Health Insurance Service for allergic diseases (asthma, allergic rhinitis, and atopic dermatitis). RESULTS: During a storm period, the numbers of allergy rhinitis and atopic dermatitis outpatients increased [rate ratio (RR) = 1.191; range, 1.150-1.232] on the sixth lag day. However, the number of asthma outpatients decreased (RR = 0.900; range, 0.862-0.937) on the sixth lag day after a disaster period. During a storm period, the numbers of allergic rhinitis outpatients (RR = 1.075; range, 1.018-1.132) and atopy outpatients increased (RR = 1.134; range, 1.113-1.155) on the seventh lag day. However, the number of asthma outpatients decreased to RR value of 0.968 (range, 0.902-1.035) on the fifth lag day. CONCLUSION: This study suggests that typhoon and heavy rain increase allergic disease apart from asthma. More study is needed to explain the decrease in asthma.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda