Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 58(3): 1615-1624, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206005

RESUMEN

Jet engines are important contributors to global CO2 emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports. We studied exhausts of a widely used turbofan engine (CFM56-7B26) operated at five static thrust levels (idle, 7, 30, 65, and 85%) with conventional Jet A-1 fuel and a biofuel blend composed of hydro-processed esters and fatty acids (HEFA). The particles released, the chemical composition of condensable material, and the genotoxic potential of these exhausts were studied. At ground operation, particle number emissions of 3.5 and 0.5 × 1014 particles/kg fuel were observed with highest genotoxic potentials of 41300 and 8800 ng toxicity equivalents (TEQ)/kg fuel at idle and 7% thrust, respectively. Blending jet fuel with HEFA lowered PAH and particle emissions by 7-34% and 65-67% at idle and 7% thrust, respectively, indicating that the use of paraffin-rich biofuels is an effective measure to reduce the exposure of airport personnel to nanoparticles coated with genotoxic PAHs (Trojan horse effect).


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos , Nanopartículas , Hidrocarburos Policíclicos Aromáticos , Emisiones de Vehículos/análisis , Material Particulado/análisis , Aeronaves , Daño del ADN , Contaminantes Atmosféricos/análisis
2.
Fuel (Lond) ; 278: 118255, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834073

RESUMEN

Nowadays, production of biofuels is a rather hot topic due to depleting of conventional fossil fuel feedstocks and a number of other factors. Plant lipid-based feedstocks are very important for production of diesel-, kerosene-, and gasoline-like hydrocarbons. Usually, (hydro)deoxygenation processes are aimed at obtaining of linear hydrocarbons known to have poor fuel characteristics compared to the branched ones. Thus, further hydroisomerization is required to improve their properties as motor fuel components. This review article is focused on conversion of lipid-based feedstocks and model compounds into high-quality fuel components for a single step - direct cracking into aromatics and merged hydrodeoxygenation-hydroisomerization to obtain isoparaffins. The second process is quite novel and a number of the research articles presented in the literature is relatively low. As auxiliary subsections, hydroisomerization of straight hydrocarbons and techno-economic analysis of renewable diesel-like fuel production are briefly reviewed as well.

3.
J Gastroenterol Hepatol ; 33(3): 681-688, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28748532

RESUMEN

BACKGROUND AND AIM: rdxA and frxA mutations and enhancement of efflux pump have been suggested as the cause of metronidazole resistance in Helicobacter pylori. This study was performed to investigate the resistance mechanisms related to clinical eradication outcome, and to examine direct involvement of hefA in metronidazole-resistant isolates with intact rdxA and frxA. METHODS: A total of 53 H. pylori-positive patients who were treated with metronidazole-containing sequential or quadruple therapy from 2011 to 2015 were enrolled. The metronidazole susceptibility of H. pylori isolates was examined by agar dilution test. Mutations in rdxA and frxA, were analyzed with DNA sequencing, and impact of hefA on metronidazole resistance was examined with quantitative real-time reverse transcription polymerase chain reaction, knockout and genetic complementation test for hefA. RESULTS: Seven mutation types of rdxA and/or frxA were found in H. pylori isolated from non-eradicated subjects. rdxA mutation was associated with eradication failure (P = 0.002), and nonsense mutation in rdxA reduced eradication efficacy (P = 0.009). hefA expression was significantly higher in resistant isolates (P < 0.001), especially in rdxA(-)frxA(-) as compared to rdxA(+)frxA(+) (P = 0.027). Resistant isolates with no mutation in rdxA and frxA became susceptible after hefA knockout. Genetic complementation for hefA recovered metronidazole resistance in all of three hefA knockout mutants. CONCLUSIONS: These results suggest that rdxA mutations play a critical role in metronidazole resistance as well as the outcomes of eradication therapy. In addition, hefA seems to be directly involved in metronidazole resistance, which explains the resistance in clinical isolates with intact rdxA and frxA.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Gastritis/microbiología , Infecciones por Helicobacter , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Metronidazol/farmacología , Mutación , Nitrorreductasas/genética , Adulto , Anciano , Femenino , Gastritis/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
4.
Int J Biol Macromol ; 253(Pt 2): 126706, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673144

RESUMEN

Helicobacter pylori (H. pylori) is a causative agent of various gastrointestinal diseases and eradication mainly relies on antibiotic treatment, with (AMX) being a key component. However, rising antibiotic resistance in H. pylori necessitates the use of antibiotics combination therapy, often disrupting gut microbiota equilibrium leading to further health complications. This study investigates a novel strategy utilizing AMX-loaded chitosan nanoparticles (AMX-CS NPs), co-administered with prebiotic inulin to counteract H. pylori infection while preserving microbiota health. Following microbroth dilution method, AMX displayed efficacy against H. pylori, with a MIC50 of 48.34 ± 3.3 ng/mL, albeit with a detrimental impact on Lactobacillus casei (L. casei). The co-administration of inulin (500 µg/mL) with AMX restored L. casei viability while retaining the lethal effect on H. pylori. Encapsulation of AMX in CS-NPs via ionic gelation method, resulted in particles of 157.8 ± 3.85 nm in size and an entrapment efficiency (EE) of 86.44 ± 2.19 %. Moreover, AMX-CS NPs showed a sustained drug release pattern over 72 h with no detectable toxicity on human dermal fibroblasts cell lines. Encapsulation of AMX into CS NPs also reduced its MIC50 against H. pylori, while its co-administration with inulin maintained L. casei viability. Interestingly, treatment with AMX-CS NPs also reduced the expression of the efflux pump gene hefA in H. pylori. This dual treatment strategy offers a promising approach for more selective antimicrobial treatment, minimizing disruption to healthy microbial communities while effectively addressing pathogenic threats.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Nanopartículas , Humanos , Amoxicilina/farmacología , Quitosano/farmacología , Inulina/farmacología , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Farmacorresistencia Microbiana
5.
Environ Pollut ; 247: 658-667, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30711821

RESUMEN

Aircraft soot has a significant impact on global and local air pollution and is of particular concern for the population working at airports and living nearby. The morphology and chemistry of soot are related to its reactivity and depend mainly on engine operating conditions and fuel-type. We investigated the morphology (by transmission electron microscopy) and chemistry (by X-ray micro-spectroscopy) of soot from the exhaust of a CFM 56-7B26 turbofan engine, currently the most common engine in aviation fleet, operated in the test cell of SR Technics, Zurich airport. Standard kerosene (Jet A-1) and a biofuel blend (Jet A-1 with 32% HEFA) were used at ground idle and climb-out engine thrust, as these conditions highly influence air quality at airport areas. The results indicate that soot reactivity decreases from ground idle to climb-out conditions for both fuel types. Nearly one third of the primary soot particles generated by the blended fuel at climb-out engine thrust bear an outer amorphous shell implying higher reactivity. This characteristic referring to soot reactivity needs to be taken into account when evaluating the advantage of HEFA blending at high engine thrust. The soot type that is most prone to react with its surrounding is generated by Jet A-1 fuel at ground idle. Biofuel blending slightly lowers soot reactivity at ground idle but does the opposite at climb-out conditions. As far as soot reactivity is concerned, biofuels can prove beneficial for airports where ground idle is a common situation; the benefit of biofuels for climb-out conditions is uncertain.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Biocombustibles , Hollín/química , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire , Hidrocarburos , Queroseno , Microscopía Electrónica de Transmisión , Análisis Espectral , Rayos X
6.
World J Gastroenterol ; 23(7): 1163-1170, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28275296

RESUMEN

AIM: To evaluate the role of biofilm formation on the resistance of Helicobacter pylori (H. pylori) to commonly prescribed antibiotics, the expression rates of resistance genes in biofilm-forming and planktonic cells were compared. METHODS: A collection of 33 H. pylori isolates from children and adult patients with chronic infection were taken for the present study. The isolates were screened for biofilm formation ability, as well as for polymerase chain reaction (PCR) reaction with HP1165 and hp1165 efflux pump genes. Susceptibilities of the selected strains to antibiotic and differences between susceptibilities of planktonic and biofilm-forming cell populations were determined. Quantitative real-time PCR (qPCR) analysis was performed using 16S rRNA gene as a H. pylori-specific primer, and two efflux pumps-specific primers, hp1165 and hefA. RESULTS: The strains were resistant to amoxicillin, metronidazole, and erythromycin, except for one strain, but they were all susceptible to tetracycline. Minimum bactericidal concentrations of antibiotics in the biofilm-forming cells were significantly higher than those of planktonic cells. qPCR demonstrated that the expression of efflux pump genes was significantly higher in the biofilm-forming cells as compared to the planktonic ones. CONCLUSION: The present work demonstrated an association between H. pylori biofilm formation and decreased susceptibility to all the antibiotics tested. This decreased susceptibility to antibiotics was associated with enhanced functional activity of two efflux pumps: hp1165 and hefA.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Adulto , Amoxicilina/farmacología , Niño , Claritromicina/farmacología , Farmacorresistencia Bacteriana Múltiple , Eritromicina/farmacología , Genes Bacterianos , Infecciones por Helicobacter/microbiología , Humanos , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Tetraciclina/farmacología
7.
World J Gastroenterol ; 21(14): 4225-31, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25892872

RESUMEN

AIM: To investigate the inhibitory effects of emodin, baicalin, etc. on the hefA gene of multidrug resistance (MDR) in Helicobacter pylori (H. pylori). METHODS: The double dilution method was used to screen MDR H. pylori strains and determine the minimum inhibitory concentrations (MICs) of emodin, baicalin, schizandrin, berberine, clarithromycin, metronidazole, tetracycline, amoxicillin and levofloxacin against H. pylori strains. After the screened MDR stains were treated with emodin, baicalin, schizandrin or berberine at a 1/2 MIC concentration for 48 h, changes in MICs of amoxicillin, tetracycline, levofloxacin, metronidazole and clarithromycin were determined. MDR strains with reduced MICs of amoxicillin were selected to detect the hefA mRNA expression by real-time quantitative PCR. RESULTS: A total of four MDR H. pylori strains were screened. Treatment with emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some strains, decreased by 1 to 2 times, but did not significantly change the MICs of clarithromycin, levofloxacin, and metronidazole against MDR strains. In the majority of strains with reduced MICs of amoxicillin, hefA mRNA expression was decreased; one-way ANOVA (SPSS 12.0) used for comparative analysis, P < 0.05. CONCLUSION: Emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some H. pylori strains, possibly by mechanisms associated with decreasing hefA mRNA expression.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Berberina/farmacología , Ciclooctanos/farmacología , Medicamentos Herbarios Chinos/farmacología , Emodina/farmacología , Flavonoides/farmacología , Helicobacter pylori/efectos de los fármacos , Lignanos/farmacología , Compuestos Policíclicos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda