Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37681301

RESUMEN

Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transcriptoma/genética , Diferenciación Celular , Células Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Hemocitos , Larva/metabolismo
2.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36093870

RESUMEN

Proven roles for hemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the crucial role of hemocytes in post-embryonic development has long thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in hemocyte-ablation models under germ-free conditions. Here, we show that hemocytes have an essential role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated strong hemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of hemocytes is early pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a hemocyte-specific phenomenon. RNA-seq data suggests that dysregulation of the midgut is a prominent consequence of hemocyte ablation in larval stages, resulting in reduced gut lengths. Dissection suggests that multiple processes may be affected during metamorphosis. We believe this previously unreported role for hemocytes during metamorphosis is a major finding for the field.


Asunto(s)
Proteínas de Drosophila , Microbiota , Animales , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario , Hemocitos , Larva
3.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502784

RESUMEN

Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.


Asunto(s)
Inmunidad Innata , Medicina Regenerativa , Sistema Inmunológico , Células Madre , Cicatrización de Heridas
4.
BMC Genomics ; 25(1): 80, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243165

RESUMEN

BACKGROUND: Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS: In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION: A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.


Asunto(s)
Anopheles , Animales , Femenino , Anopheles/genética , Anopheles/metabolismo , Hemocitos , Perfilación de la Expresión Génica , Transcriptoma , Proteínas/metabolismo
5.
J Virol ; 97(1): e0156622, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533952

RESUMEN

Ascoviruses are insect-specific viruses that are thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we monitored the in vivo infection processes of Heliothis virescens ascovirus 3h (HvAV-3h) to illustrate the regulated cell death (RCD) of host cells. Transmission electron microscopic observations did not reveal any morphological markers of apoptosis in the fat bodies or hemocytes of HvAV-3h-infected Helicoverpa armigera or Spodoptera exigua larvae. However, several hemocytes showed the morphological criteria for necrosis and/or pyroptosis. Further in vitro biochemical tests were performed to confirm the RCD type of host cells after infection with HvAV-3h. Different morphological characteristics were found between the early (prior to 24 hours post-infection, [hpi]) and later (48 to 120 hpi) stages in both HvAV-3h infected larval fat bodies and hemocytes. In the early stages, the virions could only be found in several adipohemocytes, and the fat bodies were cleaving their contained lipid inclusions into small lipid dots. In the later stage, both fat bodies and hemocytes were filled with numerous virions. According to the morphological characteristics of HvAV-3h infected larval fat bodies or hemocytes, the pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, and the systematic pathogenic mode of ascovirus infection was refined in this study. This study details the complete infection process of ascoviruses, which provides insights into the relationship between a pathogenesis of an insect virus and the RCD of different host tissues at different stages of infection. IMPORTANCE Viruses and other pathogens can interrupt host cellular apoptosis to gain benefits, such as sufficient resources and a stable environment that enables them to complete their replication and assembly. It is unusual for viruses to code proteins with homology to caspases, which are commonly recognized as apoptosis regulators. Ascoviruses are insect viruses with special cytopathology, and they have been hypothesized to induce apoptosis in their host larvae via coding a caspase-like protein. This enables them to utilize the process of cellular apoptosis to facilitate vesicle formation and replication. However, our previous studies revealed different trends. The fat bodies and hemocytes of Heliothis virescens ascovirus 3h (HvAV-3h)-infected larvae did not show any morphological markers of apoptosis but did display necrosis and/or pyroptosis morphological characteristics. The pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, which can help us understand the relationship between the pathogenesis of an insect virus and host RCD.


Asunto(s)
Ascoviridae , Mariposas Nocturnas , Muerte Celular Regulada , Animales , Caspasas , Larva/virología , Lípidos , Mariposas Nocturnas/virología , Necrosis , Spodoptera/virología
6.
Microb Pathog ; 196: 106928, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270754

RESUMEN

In recent years, the red swamp crayfish (Procambarus clarkii, P. clarkii) farming industry has suffered huge economic losses due to the pathogenic bacterium Spiroplasma eriocheiris (S. eriocheiris). To elucidate the immune response mechanism and identify hub immune genes as well as their associated microRNAs that regulate the host response of P. clarkii against S. eriocheiris infection, we conducted a comprehensive analysis on P. clarkii hemocyte mRNA and microRNA (miRNA) transcriptomes at different infection stages using third- and second-generation sequencing technologies. In full-length transcriptome functional annotation, 8155 unigenes were annotated, and 1168 potential new transcripts were predicted. In the mRNA transcriptome, a total of 3168 differentially expressed genes were identified at different infection stages, including 1492 upregulated and 1676 downregulated genes (duplicate genes excluded). Transcriptome analysis revealed 880 differentially expressed genes involved in multiple pathways and processes such as endocytosis, autophagy, lysosome, mTOR signaling, phagosome, and the Fanconi anemia pathway. Mfuzz analysis was employed to integrate and cluster the differential expression trends of genes across the three infection stages. In the miRNA transcriptome, 234 miRNAs and 966 predicted target genes were identified, with 86 differentially expressed miRNAs identified across the three time periods. A significant difference (P < 0.05) was observed for miRNAs including pcl-miR-146-3p, pcl-miR-74-3p, pcl-miR-225-5p, and pcl-miR-68-5p. These miRNAs are involved in multiple immune and autophagy-related pathways and have regulatory effects on immune genes including Vps26, lqf, and ERK-A. Based on the differentially expressed immune-related genes, we constructed a protein-protein interaction (PPI) network, which revealed the interactions among hub genes including Rac1, Akt1, Rho1, and Egfr. We also constructed a miRNA-gene interaction network in immune and autophagy-related processes, highlighting the potential regulatory effects of miRNAs including pcl-miR-183-5p, pcl-miR-146-3p, pcl-miR-176-5p, and pcl-miR-225-5p on proteins including LST8, SNAP29, Rab-7A, and ERK-A. To conclude, this study has identified hub immune genes and corresponding regulatory miRNAs in P. clarkii hemocytes in response to S. eriocheiris infection and explored the roles of these genes in selected pathways and processes. These findings are expected to provide further insights into the molecular mechanisms that confer resistance to S. eriocheiris infection in P. clarkii.

7.
Fish Shellfish Immunol ; 153: 109831, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142372

RESUMEN

Aquaculture industry suffers significant limitations such as low resistance to diseases and expensive feed. This study investigated the antibacterial and immunostimulatory activities of ZnO-Ulva lactuca nanocomposite (ZnO-Ul NC) in the Procambarus clarkii. Zinc oxide nanoparticles (ZnO NPs) and ZnO-Ul NC were synthetized and characterized by electron microscopies as well as Fourier transform infrared spectroscopy. ZnO NPs and ZnO-Ul NC inhibited the growth of the isolated species Citrobacter freundii and Enterobacter hormaechei. For immunostimulatory evaluation, six crayfish groups (control, U. lactuca, ZnO L, ZnO H, ZnO-Ul L, and ZnO-Ul H) were fed on commercial diet, Ulva lactuca powder, and low or high dose of ZnO NPs or ZnO-Ul NCs, respectively for 90 days. The highest levels of total hemocyte count, granular cells%, phenoloxidase (PO) activity in hemolymph, and NO, superoxide dismutase (SOD), and GSH in hepatopancreas were all reported in the ZnO-Ul groups. The expression of proPO, SOD, and lysozyme exhibited the highest upregulation in the ZnO-Ul H group. Taken together, dietary ZnO-Ul NC significantly improved the non-specific immunity and antioxidant milieu of the crayfish at the genomic and proteomic levels. ZnO-Ul NC is cost effective, easily synthesized, and a promising immunostimulant for Procambarus clarkii that could be used in the aquaculture.


Asunto(s)
Adyuvantes Inmunológicos , Alimentación Animal , Astacoidea , Dieta , Suplementos Dietéticos , Nanocompuestos , Ulva , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/administración & dosificación , Astacoidea/inmunología , Astacoidea/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Nanocompuestos/química , Ulva/química , Inmunidad Innata/efectos de los fármacos , Antibacterianos/farmacología , Algas Comestibles
8.
Fish Shellfish Immunol ; 151: 109664, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844186

RESUMEN

Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.


Asunto(s)
Hemocitos , Picornaviridae , Animales , Picornaviridae/inmunología , Hemocitos/inmunología , Hemocitos/ultraestructura , Inmunocompetencia , Bivalvos/inmunología , Bivalvos/virología , Fagocitosis , España , Citometría de Flujo/veterinaria , Microscopía Electrónica de Transmisión/veterinaria , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/virología
9.
Fish Shellfish Immunol ; 144: 109299, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104700

RESUMEN

Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Ciclofilina A/genética , ARN Mensajero/metabolismo , Antivirales/metabolismo , Hemocitos
10.
Fish Shellfish Immunol ; 154: 109932, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343062

RESUMEN

There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.

11.
Fish Shellfish Immunol ; 144: 109278, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072136

RESUMEN

Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.


Asunto(s)
Contaminantes Ambientales , Pectinidae , Animales , Benzo(a)pireno , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Hemocitos/metabolismo , FN-kappa B , Norepinefrina , Pectinidae/metabolismo
12.
Arch Insect Biochem Physiol ; 116(4): e22146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190478

RESUMEN

T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds.


Asunto(s)
Dípteros , Larva , Animales , Larva/inmunología , Dípteros/inmunología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Hemocitos/inmunología , Hemocitos/metabolismo , Simuliidae/inmunología , Ribonucleasas/metabolismo , Ribonucleasas/genética , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/inmunología , Inmunidad Innata
13.
J Invertebr Pathol ; 204: 108109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631557

RESUMEN

Varroa destructor is one of the most destructive enemies of the honey bee, Apis mellifera all around the world. Several control methods are known to control V. destructor, but the efficacy of several alternative control methods remains unexplored. Irradiation can be one of these unknown solutions but before practical application, the effectiveness, and the physiological effects of ionizing radiation on the host and the parasite are waiting to be tested. Therefore, the objective of our study was to investigate the effects of different doses (15, 50, 100, and 150 Gy) of high-energy X-ray irradiation through mortality rates and hemocyte composition changes in A. mellifera workers and record the mortality rates of the parasite. The mortality rate was recorded during short-term (12, 24, and 48 h) and long-term periods (3, 6, 12, 18, and 24d). The sensitivity of the host and the parasite in case of the higher doses of radiation tested (50, 100, and 150 Gy) been demonstrated by total mortality of the host and 90 % of its parasite has been observed on the 18th day after the irradiation. V. destructor showed higher sensitivity (1.52-times higher than the adult honey bee workers) at the lowest dose (15 Gy). A. mellifera hemocytes were influenced significantly by radiation dosage and the elapsed time after treatment. The higher radiation doses increased plasmatocyte numbers in parallel with the decrease in prohemocyte numbers. On the contrary, the numbers of granulocytes and oencoytes increased in the treated samples, but the putative effects of the different dosages on the recorded number of these hemocyte types could not be statistically proven. In summary, based on the outcome of our study X-ray irradiation can be deemed an effective tool for controlling phoretic V. destructor. However, further research is needed to understand the physiological response of the affected organisms.


Asunto(s)
Hemocitos , Hemolinfa , Varroidae , Animales , Abejas/parasitología , Abejas/efectos de la radiación , Abejas/inmunología , Varroidae/efectos de la radiación , Rayos X , Hemolinfa/efectos de la radiación , Hemolinfa/parasitología , Hemocitos/efectos de la radiación , Hemocitos/inmunología , Interacciones Huésped-Parásitos/efectos de la radiación
14.
J Invertebr Pathol ; 206: 108165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986766

RESUMEN

This work examines the insecticidal activity of octanoic acid (C8:0), a short-chain fatty acid detected in entomopathogenic fungus - Conidiobolus coronatus medium, against Lucilia sericata larvae and adults. The LD50 value was calculated as 3.04±0.26 µg/mg (3040 mg/kg) of insect body mass, which places the compound in category 5 of acute toxicity (slightly hazardous). The presented research also describes its probable mechanism, with a particular focus on changes in two main insect defense mechanisms: (1) the composition of the cuticle (GC-MS analysis) and (2) immunocompetent cells (microscopic analysis of cultured hemocytes). More precisely, octanoic acid application resulted in changes in cuticular free fatty acid (FFA) profiles in both adults and larvae; generally, treatment increased short-chain FFAs, and a decrease of middle- and long-chain FFAs. Both in vivo and in vitro applications of octanoic acid resulted in vacuolisation, disintegration, and destruction of nets formed by plasmatocytes. As the compound has also previously been found to be toxic against Galleria mellonella, it appears to have lethal potential against insects in both the Orders Diptera and Lepidoptera, indicating it may have strong entomopathogenic potential. It is worth noting that octanoic acid is approved as a food additive with well-documented insecticidal activity, and hence may be a valuable component in the design of new insecticides that are safe for both humans and the environment.


Asunto(s)
Calliphoridae , Caprilatos , Insecticidas , Larva , Animales , Caprilatos/farmacología , Caprilatos/química , Insecticidas/farmacología , Calliphoridae/efectos de los fármacos , Larva/efectos de los fármacos , Larva/microbiología , Ácidos Grasos no Esterificados/metabolismo , Hemocitos/efectos de los fármacos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38908680

RESUMEN

The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels.


Asunto(s)
Antioxidantes , Catalasa , Daño del ADN , Branquias , Mytilus , Estrés Oxidativo , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Animales , Branquias/metabolismo , Branquias/patología , Antioxidantes/metabolismo , Mytilus/metabolismo , Concentración de Iones de Hidrógeno , Catalasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Hemocitos/metabolismo , Agua/metabolismo , Hipoxia/metabolismo
16.
Pestic Biochem Physiol ; 203: 105965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084763

RESUMEN

Herein, we focused on the larvicidal effects and potential mechanisms of 5-ethenyl-2,2'-bithiophene (5 EB), a compound isolated from Echinops ritro L. on Aedes aegypti larvae. Our results show that 5 EB exhibits pronounced larvicidal activity against A. aegypti larvae, with an LC50 = 0.24 mg/L, considerably lesser than that of the traditional insecticide, rotenone. Observations using fluorescence microscopy, electron microscopy, and imaging flow cytometry demonstrated that 5 EB targets the hemocytes of larvae, leading to the disruption of their intracellular membrane systems. This disruption leads to considerable damage to the cellular structure and function, leading to the death of test subjects. Note that additional investigation into the molecular mechanism of 5 EB's action was conducted using transcriptomic analysis. Both GO and KEGG enrichment analyses reported that the differentially expressed genes were predominantly associated with membranes, lysosomes, and catalytic activities. To summarize, this study provides new options for developing new, environmentally friendly, plant-based larvicides for mosquito control.


Asunto(s)
Aedes , Insecticidas , Larva , Animales , Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Insecticidas/farmacología , Echinops (Planta)/química , Tiofenos/farmacología , Control de Mosquitos/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química
17.
FASEB J ; 36(5): e22321, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429011

RESUMEN

Hemocytes are invertebrate immune cells that are similar to blood cells in vertebrates and play a crucial role in innate immunity. Previous work has found that mature circulating hemocytes lack the ability to proliferate. However, recent single-cell RNA sequencing and functional studies in invertebrate have challenged this view. Here, we report that bacteria induced hemocytes proliferation in the Chinese mitten crab, Eriocheir sinensis. Flow cytometry was used to collect non-proliferating and proliferating hemocytes populations, while the expression of EsCyclin E was highly expressed in proliferating hemocytes, but the expression of EsCsn5 was significantly suppressed in proliferating hemocytes. Subsequent studies have found EsCsn5 distributed in two fractions include holo-complex and monomeric form, whereas knockdown of EsCsn5 has little impact on the amount of the holo-complex. EsCsn5 was widely expressed in different crab tissues, while its expression was significantly reduced upon bacterial infection. Crab hemocytes showed significantly enhanced proliferation when EsCsn5 was genetically knocked down, suggesting a critical role for CSN5 in the negative regulation of crab hemocyte proliferation. Moreover, EsCSN5 but not the EsCSN8 was demonstrated to negatively regulate the early G1 phase of the cell cycle by controlling the degradation of EsCyclin E through ubiquitination steps, rather than affecting its transcription. Furthermore, in the EsCyclin E-suppressed crab there was a significantly reduced survival rate and an up-regulated hemolymph bacterial concentration. Taken together, this study provides evidence demonstrating that invertebrate hemocytes down-regulate the expression of EsCsn5 upon bacterial challenge, thus promoting proliferation in an EsCyclin E-dependent manner in order to protect the crab from infection.


Asunto(s)
Infecciones Bacterianas , Hemocitos , Animales , Proteínas de Artrópodos/genética , Proliferación Celular , Ciclina E/genética , Fase G1 , Hemocitos/metabolismo , Inmunidad Innata/genética , Filogenia
18.
Fish Shellfish Immunol ; 137: 108791, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146849

RESUMEN

The internal defense system of mollusks represents an efficient protection against pathogens and parasites, involving several biological immune processes, such as phagocytosis, encapsulation, cytotoxicity, and antigenic recognition of self/non-self. Mollusks possess professional, migratory, and circulating cells that play a key role in the defense of the organism, the hemocytes. Several studies have been performed on hemocytes from different mollusks, but, to date, these cells are still scarcely explored. Different hemocyte populations have been found, according to the presence or absence of granules, size, and the species of mollusks studied. Our study aims to deepen the knowledge of the hemocytes of the gastropod Aplysia depilans using morphological techniques and light and confocal microscopy, testing Toll-like receptor 2, inducible nitric oxide synthetase, and nicotinic acetylcholine receptor alpha 7 subunit. Our results show two hemocyte populations distinguishable by size, and presence/absence of granules in the cytoplasm, strongly positive for the antibodies tested, suggesting for the first time the presence of these receptors on the surface of sea hare hemocytes by immunohistochemistry. These data help in the understanding of the immune system of this gastropod, providing additional data for comprehending the evolution of the defense response in metazoan phylogenesis.


Asunto(s)
Aplysia , Gastrópodos , Animales , Hemocitos , Moluscos , Fagocitosis
19.
Fish Shellfish Immunol ; 139: 108927, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406892

RESUMEN

The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.


Asunto(s)
Palaemonidae , Infecciones Estafilocócicas , Animales , Staphylococcus aureus , Hemocitos , Fosfatidilinositol 3-Quinasas/genética , Perfilación de la Expresión Génica , Transcriptoma , Inmunidad Innata/genética , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/veterinaria
20.
Fish Shellfish Immunol ; 140: 108992, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567455

RESUMEN

Decondensation and the subsequent release of chromatin from specific immune cells in response to inflammatory stimuli is a highly conserved aspect of the innate immune system and leads to the formation of extracellular traps, observable in nearly all forms of multicellular life. This process is known as ETosis, with the release of DNA and its associated antimicrobial proteins physically capturing and neutralizing pathogens following an infection or tissue damage. Despite the universality of this response, data concerning extracellular traps in non-model organisms is limited, with most invertebrate studies doing little more than proving their existence due to difficulties in stimulation and high interindividual variability in trap production. This study provides a novel, simple, and inexpensive method for the consistent stimulation of extracellular traps in eastern oyster (Crassostrea virginica) hemocytes. Using the methods described in this study, we compared how ploidy impacts the rate, size, and efficacy of extracellular traps. Findings demonstrated that hemocyte extracellular traps were potent antimicrobials against both Gram-positive and Gram-negative bacteria. Furthermore, we provide evidence to suggest that agranulocytes may be the primary ETosis effector cells in C. virginica. This study is the first to describe extracellular traps in C. virginica and highlights the possible benefits of using triploid animals to gain a further understanding of ETosis and the factors that regulate its induction and efficacy.


Asunto(s)
Crassostrea , Trampas Extracelulares , Animales , Trampas Extracelulares/genética , Triploidía , Antibacterianos/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Hemocitos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda