RESUMEN
Hexokinases (HKs) control the first step of glucose catabolism. A switch of expression from liver HK (glucokinase, GCK) to the tumor isoenzyme HK2 is observed in hepatocellular carcinoma progression. Our prior work revealed that HK isoenzyme switch in hepatocytes not only regulates hepatic metabolic functions but also modulates innate immunity and sensitivity to Natural Killer (NK) cell cytotoxicity. This study investigates the impact of HK2 expression and its mitochondrial binding on the resistance of human liver cancer cells to NK-cell-induced cytolysis. We have shown that HK2 expression induces resistance to NK cell cytotoxicity in a process requiring mitochondrial binding of HK2. Neither HK2 nor GCK expression affects target cells' ability to activate NK cells. In contrast, mitochondrial binding of HK2 reduces effector caspase 3/7 activity both at baseline and upon NK-cell activation. Furthermore, HK2 tethering to mitochondria enhances their resistance to cytochrome c release triggered by tBID. These findings indicate that HK2 mitochondrial binding in liver cancer cells is an intrinsic resistance factor to cytolysis and an escape mechanism from immune surveillance.
RESUMEN
Control of nutrient homeostasis plays a central role in cell proliferation/survival during embryonic development and tumor growth. Activation of the Notch signaling pathway, a major contributor to cell-cell interactions, is a potential mechanism for cell adaptation to nutrient-poor conditions. Our previous study also demonstrated that during embryogenesis when nutrients such as glutamine and growth factors are potentially maintained at lower levels, Notch signaling suppresses mRNA expression of hexokinase 2 (hk2), which is a glycolysis-associated gene, in the central nervous system. However, whether and how the genetic regulation of HK2 via Notch signaling contributes to cellular adaptability to nutrient-poor environments remains unknown. In this study, we performed gene expression analysis using a U87-MG human glioma cell line and revealed that under conditions where both glutamine and serum were absent, Notch signaling was activated and HK2 expression was downregulated by Notch signaling. We also found that Notch-mediated HK2 suppression was triggered in a Notch ligand-selective manner. Furthermore, HK2 was shown to inhibit cell proliferation of U87-MG gliomas, which might depend on Notch signaling activity. Together, our findings suggest the involvement of Notch-mediated HK2 suppression in an adaptive mechanism of U87-MG glioma cells to nutrient-poor conditions.
RESUMEN
Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.
Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Humanos , Microglía/metabolismo , Hexoquinasa/metabolismo , Hexoquinasa/farmacología , Enfermedades Neuroinflamatorias , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Ganglios Espinales/metabolismo , Médula Espinal/metabolismo , Traumatismos de los Nervios Periféricos/metabolismoRESUMEN
Retinopathy of prematurity (ROP) is a retinal disease-causing retinal neovascularization that can lead to blindness. Oxygen-induced retinopathy (OIR) is a widely used ROP animal model. Icariin (ICA) has anti-oxidative and anti-inflammation properties; however, whether ICA has a regulatory effect on OIR remains unclear. In this study, ICA alleviated pathological neovascularization, microglial activation and blood-retina barrier (BRB) damage in vivo. Further results indicated that endothelial cell tube formation, migration and proliferation were restored by ICA treatment in vitro. Proteomic microarrays and molecular mimicry revealed that ICA can directly bind to hexokinase 2 (HK2) and decrease HK2 protein expression in vivo and in vitro. In addition, ICA inhibited the AKT/mTOR/HIF1α pathway activation. The effects of ICA on pathological neovascularization, microglial activation and BRB damage disappeared after HK2 overexpression in vivo. Similarly, the endothelial cell function was revised after HK2 overexpression. HK2 overexpression reversed ICA-induced AKT/mTOR/HIF1α pathway inhibition in vivo and in vitro. Therefore, ICA prevented pathological angiogenesis in OIR in an HK2-dependent manner, implicating ICA as a potential therapeutic agent for ROP.
Asunto(s)
Flavonoides , Hexoquinasa , Microglía , Oxígeno , Neovascularización Retiniana , Retinopatía de la Prematuridad , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Flavonoides/farmacología , Flavonoides/uso terapéutico , Hexoquinasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neovascularización Retiniana/tratamiento farmacológico , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Migration of mesenchymal stem cells (MSCs) to the site of injury is crucial in transplantation therapy. Studies have shown that cell migration is regulated by the cellular microenvironment and accompanied by changes in cellular metabolism. However, limited information is available about the relationship between MSC migration and cellular metabolism. Here, we show that basic fibroblast growth factor (bFGF) promotes the migration of MSCs with high levels of glycolysis and high expression of hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. The enhancement of glycolysis via the activation of HK2 expression promoted the migration of MSCs, whereas the inhibition of glycolysis, but not of oxidative phosphorylation, inhibited the bFGF-induced migration of these cells. Furthermore, bFGF enhanced glycolysis by increasing HK2 expression, which consequently promoted ß-catenin accumulation, and the inhibition of glycolysis inhibited the bFGF-induced accumulation of ß-catenin. When the accumulation of glycolytic intermediates was altered, phosphoenolpyruvate was found to be directly involved in the regulation of ß-catenin expression and activation, suggesting that bFGF regulates ß-catenin signaling through glycolytic intermediates. Moreover, transplantation with HK2-overexpressing MSCs significantly improved the effect of cell therapy on skull injury in rats. In conclusion, we propose a novel glycolysis-dependent ß-catenin signaling regulatory mechanism and provide an experimental and theoretical basis for the clinical application of MSCs.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Células Madre Mesenquimatosas , Animales , Ratas , beta Catenina/metabolismo , Movimiento Celular , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Glucólisis , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización WntRESUMEN
Obesity is a major health concern that lacks effective intervention strategies. Traumatic acid (TA) is a potent wound-healing agent in plants, considered an antioxidant food ingredient. This study demonstrated that TA treatment significantly reduced lipid accumulation in human adipocytes and prevented high-fat diet induced obesity in zebrafish. Transcriptome sequencing revealed TA-activated fatty acid (FA) degradation and FA metabolism signaling pathways. Moreover, western blotting and quantitative polymerase chain reaction showed that TA inhibited the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Overexpression of ACSL4 resulted in the reversal of TA beneficiary effects, indicating that the attenuated lipid accumulation of TA was regulated by ACSL4 expression. Limited proteolysis-mass spectrometry and microscale thermophoresis were then used to confirm hexokinase 2 (HK2) as a direct molecular target of TA. Thus, we demonstrated the molecular basis of TA in regulating lipid accumulation and gave the first evidence that TA may function through the HK2-ACSL4 axis.
Asunto(s)
Dieta Alta en Grasa , Pez Cebra , Humanos , Animales , Dieta Alta en Grasa/efectos adversos , Adipocitos , Obesidad/etiología , LípidosRESUMEN
In this paper, we investigated the anticancer effect and the mechanism of our newly synthesized bibenzyl 8Ae against human lung cancer A549 cells. Compound 8Ae could induce apoptosis by inhibiting the glycolysis in A549 cells. Hexokinase 2 (HK2), the first key enzyme in glycolysis process, was significantly down-regulated by 8Ae. Besides, compound 8Ae induced HK2 dissociated from mitochondria to cytosol, which could be induced by inhibiting the phosphorylation of Akt. In addition, 8Ae could induce mitochondrial-mediated apoptosis, and mitochondrial membrane potential (MMP) was decreased. After 8Ae treatment, the Bax/Bcl-2 ratio was increased and cytochrome c (Cyt c) was release from mitochondria to cytosol. Molecular docking indicated that 8Ae have an interaction with HK2 by extending into acitve pockets of the protein to form stable hydrogen bonds. Additionally, 8Ae had significantly improved pharmacokinetic properties through the prediction, comparison, and analysis of the ADMET properties of 8Ae and moscatilin (MST). Taken together, 8Ae might inhibit glycolysis by stimulating the shedding of HK2 from mitochondria and promoting mitochondria-regulated apoptosis to inhibit the proliferation of A549 cells. This article provides a research basis for bibenzyl compounds as new small molecule drugs for lung cancer.
Asunto(s)
Antineoplásicos , Apoptosis , Glucólisis , Hexoquinasa , Mitocondrias , Humanos , Hexoquinasa/metabolismo , Hexoquinasa/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Glucólisis/efectos de los fármacos , Bibencilos/farmacología , Bibencilos/química , Bibencilos/síntesis química , Proliferación Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Potencial de la Membrana Mitocondrial/efectos de los fármacosRESUMEN
Unlike other epithelial cancer types, circulating tumor cells (CTCs) are less frequently detected in the peripheral blood of non-small cell lung cancer (NSCLC) patients using epithelial marker-based detection approaches despite the aggressive nature of NSCLC. Here, we demonstrate hexokinase-2 (HK2) as a metabolic function-associated marker for the detection of CTCs. In 59 NSCLC patients bearing cytokeratin-positive (CKpos) primary tumors, HK2 enables resolving cytokeratin-negative (HK2high/CKneg) CTCs as a prevalent population in about half of the peripheral blood samples with positive CTC counts. However, HK2high/CKneg tumor cells are a minority population in pleural effusions and cerebrospinal fluids. Single-cell analysis shows that HK2high/CKneg CTCs exhibit smaller sizes but consistent copy number variation profiles compared with CKpos counterparts. Single-cell transcriptome profiling reveals that CK expression levels of CTCs are independent of their epithelial-to-mesenchymal transition (EMT) status, challenging the long-standing association between CK expression and EMT. HK2high/CKneg CTCs display metastasis and EGFR inhibitor resistance-related molecular signatures and are selectively enriched in patients with EGFRL858R driver oncogene mutation as opposed to EGFR19Del , which is more frequently found in patients with prevalent CKpos CTCs in the blood. Consistently, treatment-naïve patients with a larger number or proportion of HK2high/CKneg CTCs in the blood exhibit poor therapy response and shorter progression-free survival. Collectively, our approach resolves a more complete spectrum of CTCs in NSCLC that can potentially be exploited to identify patient prognosis before therapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Hexoquinasa/sangre , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Transición Epitelial-Mesenquimal , Receptores ErbB/genética , Genotipo , Humanos , Queratinas/sangre , Biopsia Líquida , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/enzimología , PronósticoRESUMEN
One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.
Asunto(s)
Autofagia , Fibroblastos Asociados al Cáncer , Glucosa , Neoplasias Ováricas , Humanos , Femenino , Autofagia/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Glucosa/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Resveratrol/farmacología , Medios de Cultivo Condicionados/farmacología , Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacosRESUMEN
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine linker acylated on an N' nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide requires the introduction of other endogenous amino acids instead of serine. Herein, we report the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively.
Asunto(s)
Aminoácidos , Benserazida , Benserazida/farmacología , Hidrazonas , SerinaRESUMEN
Spi-1 proto-oncogene (SPI1) plays a vital role in carcinogenesis. Our work aimed to investigate the potential regulatory mechanism of SPI1 in melanoma. The mRNA and protein levels were measured via qRT-PCR and Western blotting. Cell viability was assessed by CCK-8 assay. The target relationship between SPI1 and hexokinase 2 (HK2) was determined using dual-luciferase reporter detection. ChIP was conducted to confirm the targeted relationship between SPI1 and the HK2 promoter. Immunohistochemistry analysis was conducted to measure the positive cell number of SPI1 and HK2 in melanoma tissues. The cell migration abilities were determined using a wound healing assay. Glucose consumption, pyruvate dehydrogenase activity, lactate production and ATP levels were measured to assess glycolysis. SPI1 transcription in melanoma cells and tissues was dramatically higher than that in adjacent normal tissues and epidermal melanocyte HEMa-LP, respectively. Knockdown of SPI1 restrained cell viability, metastasis and glycolysis in melanoma cells. SPI1 directly targeted HK2, and knockdown of SPI1 repressed HK2 expression. Overexpression of HK2 weakened the inhibitory effects of SPI1 knockdown on the viability, metastasis and glycolysis of melanoma cells. The serine-threonine kinase 1 (AKT1)/mammalian target of rapamycin (mTOR) axis is involved in melanoma progression. SPI1 knockdown restrained melanoma cell proliferation, metastasis and glycolysis by regulating the AKT1/mTOR pathway.
Asunto(s)
Melanoma , MicroARNs , Humanos , MicroARNs/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Melanoma/genética , Melanoma/patología , Proliferación Celular/genética , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma Cutáneo MalignoRESUMEN
The adoptive transfer of ex vivo generated myeloid-derived suppressor cells (MDSCs) may be a promising therapeutic strategy for preventing allograft rejection after solid organ transplantation. Currently, the precise role of immune-metabolic pathways in the differentiation and function of MDSCs is not fully understood. Hexokinase 2 (HK2) is an isoform of hexokinase and is a key enzyme involved in the increased aerobic glycolysis of different immune cells during their activation and function. Here, we demonstrate that the addition of HK2 inhibitor 3-Bromopyruvic acid (3-BrPA) into traditional MDSCs induction system in vitro significantly promoted MDSCs production and enhanced their immunosuppressive function. Treatment with 3-BrPA increased the expression of MDSC-related immunosuppressive molecules, such as iNOS, Arg1, and CXCR2. Moreover, the adoptive transfer of 3-BrPA-treated MDSCs significantly prolonged the survival time of mouse heart allografts. This study provides a novel strategy to solve the problems of harvesting enough autologous cells for MDSC production from sick patients, and producing functionally enhanced MDSCs for preventing graft rejection and inducing tolerance.
Asunto(s)
Células Supresoras de Origen Mieloide , Trasplante de Órganos , Ratones , Animales , Hexoquinasa/metabolismo , Inmunosupresores/farmacología , Diferenciación CelularRESUMEN
AIMS: The study is aimed at understanding the novel molecular mechanisms governing drug resistance in the opportunistic fungi belonging to the genus Candida. METHODS AND RESULTS: This is a multipronged study wherein different assays like drug susceptibility and whole cell proteome analysis, stress tolerance assay, measurement of total internal glycerol content, western blot analysis, reactive oxygen species (ROS) measurement, glucose uptake, lactate production, ATP generation, and NADPH measurements were made.The study reveals an incidence of different species of Candida in the northern most part of India (Kashmir valley). Resistant isolates, mostly resistant to azoles were reported across all the species. The study revealed a difference in resistance mechanisms between Candida albicans and C. glabrata clinical isolates. Further, such resistance mechanism (in the case of C. albicans) was mostly mediated by Hexokinase 2 (Hxk2) and Glucose-6-phosphate dehydrogenase (G6pd). Increased expression of Hxk2 was associated with increased glucose uptake, more lactate production, and more ATP generation in drug-resistant C. albicans. At the same time, increased G6pd expression was responsible for the increased production of NADPH, which imparts a better ROS scavenging potential. While in C. glabrata the resistance was linked with glycerol metabolism, where the drug-resistant isolate tends to accumulate more glycerol as an osmolyte in response to external stresses. This glycerol accumulation was found to be triggered by the HOG1-MAPK pathway. CONCLUSION: The study concludes that, like various human malignant tumors, there is a strong correlation between drug resistance and aberrant cellular metabolism in the opportunistic fungi belonging to the genus Candida.
Asunto(s)
Antifúngicos , Candida , Humanos , Candida/genética , Antifúngicos/farmacología , Glicerol , NADP , Especies Reactivas de Oxígeno , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Candida albicans , Candida glabrata , Adenosina TrifosfatoRESUMEN
Involvement of alpha-synuclein (αSyn) in Parkinson's disease (PD) is complicated and difficult to trace on cellular and molecular levels. Recently, we established that αSyn can regulate mitochondrial function by voltage-activated complexation with the voltage-dependent anion channel (VDAC) on the mitochondrial outer membrane. When complexed with αSyn, the VDAC pore is partially blocked, reducing the transport of ATP/ADP and other metabolites. Further, αSyn can translocate into the mitochondria through VDAC, where it interferes with mitochondrial respiration. Recruitment of αSyn to the VDAC-containing lipid membrane appears to be a crucial prerequisite for both the blockage and translocation processes. Here we report an inhibitory effect of HK2p, a small membrane-binding peptide from the mitochondria-targeting N-terminus of hexokinase 2, on αSyn membrane binding, and hence on αSyn complex formation with VDAC and translocation through it. In electrophysiology experiments, the addition of HK2p at micromolar concentrations to the same side of the membrane as αSyn results in a dramatic reduction of the frequency of blockage events in a concentration-dependent manner, reporting on complexation inhibition. Using two complementary methods of measuring protein-membrane binding, bilayer overtone analysis and fluorescence correlation spectroscopy, we found that HK2p induces detachment of αSyn from lipid membranes. Experiments with HeLa cells using proximity ligation assay confirmed that HK2p impedes αSyn entry into mitochondria. Our results demonstrate that it is possible to regulate αSyn-VDAC complexation by a rationally designed peptide, thus suggesting new avenues in the search for peptide therapeutics to alleviate αSyn mitochondrial toxicity in PD and other synucleinopathies.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Células HeLa , Humanos , Lípidos , Mitocondrias/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.
Asunto(s)
Interleucina-6 , Neoplasias Ováricas , Humanos , Femenino , Resveratrol/farmacología , Resveratrol/uso terapéutico , Interleucina-6/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Glucólisis , AutofagiaRESUMEN
BACKGROUND: When infected with Porphyromonas gingivalis, gingival fibroblasts undergo metabolic reprogramming, and rely on aerobic glycolysis rather than oxidative phosphorylation for rapid energy replenishment. Hexokinases (HKs) are catalysts for glucose metabolism, and HK2 constitutes the major HK inducible isoform. The objective of this study is to determine whether HK2-mediated glycolysis promotes inflammatory responses in inflamed gingiva. METHODS: Levels of glycolysis-related genes were assessed in normal and inflamed gingiva. Human gingival fibroblasts were harvested and infected with Porphyromonas gingivalis in order to mimic periodontal inflammation. 2-deoxy-d-glucose, an analogue of glucose, was used to block HK2-mediated glycolysis, while small interfering RNA was used to knock down HK2 expression. The mRNA and protein levels of genes were analyzed by real-time quantitative PCR and western blotting, respectively. HK2 activity and lactate production were assessed by ELISA. Cell proliferation was assessed by confocal microscopy. The generation of reactive oxygen species was assessed by flow cytometry. RESULTS: Elevated expression of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was observed in the inflamed gingiva. P. gingivalis infection was shown to promote glycolysis in human gingival fibroblasts, as evidenced by increased gene transcription of HK2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, cell glucose consumption, and HK2 activity. Inhibition and knockdown of HK2 resulted in reduced cytokine production, cell proliferation, and reactive oxygen species generation. Furthermore, P. gingivalis infection activated the hypoxia-inducible factor-1α signaling pathway, thus promoting HK2-mediated glycolysis and proinflammatory responses. CONCLUSIONS: HK2-mediated glycolysis promotes inflammatory responses in gingival tissues, and therefore glycolysis can be targeted in order to inhibit the progression of periodontal inflammation.
Asunto(s)
Hexoquinasa , Porphyromonas gingivalis , Humanos , Hexoquinasa/metabolismo , Encía/metabolismo , Fosfofructoquinasa-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inflamación , Glucólisis , Fibroblastos/metabolismo , Glucosa/farmacologíaRESUMEN
This study aimed to investigate the relationship between coagulating cold and blood stasis syndrome and glycolysis, and observe the intervention effect of Liangfang Wenjing Decoction(LFWJD) on the expression of key glycolytic enzymes in the uterus and ovaries of rats with coagulating cold and blood stasis. The rat model of coagulating cold and blood stasis syndrome was established by ice-water bath. After modeling, the quantitative scoring of symptoms were performed, and according to the scoring results, the rats were randomly divided into a model group and LFWJD low-, medium-and high-dose groups(4.7, 9.4, 18.8 g·kg~(-1)·d~(-1)), with 10 in each group. Another 10 rats were selected as the blank group. After 4 weeks of continuous administration by gavage, the quantitative scoring of symptoms was repeated. Laser speckle flowgraphy was used to detect the changes of microcirculation in the ears and uterus of rats in each group. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology of uterus and ovaries of rats in each group. The mRNA and protein expressions of pyruvate dehydrogenase kinase 1(PDK1), hexokinase 2(HK2) and lactate dehydrogenase A(LDHA) in the uterus and ovaries of rats were examined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. The rats in the model group showed signs of coagulating cold and blood stasis syndrome, such as curl-up, less movement, thickened veins under the tongue, and reduced blood perfusion in the microcirculation of the ears and uterus, and HE staining revealed a thinning of the endometrium with disorganized arrangement of epithelial cells and a decrease in the number of ovarian follicles. Compared with the model group, the treatment groups had alleviated coagulating cold and blood stasis, which was manifested as red tongue, reduced nail swelling, no blood stasis at the tail end as well as increased blood perfusion of the microcirculation in the ears and uterus(P<0.05 or P<0.01). Among the groups, the LFWJD medium-and high-dose groups had the most significant improvement in coagulating cold and blood stasis, with neatly arranged columnar epithelial cells in uterus, and the number of ovarian follicles was higher than that in the model group, especially mature follicles. The mRNA and protein expressions of PDK1, HK2, LDHA in uterus and ovaries were up-regulated in the model group(P<0.05 or P<0.01), while down-regulated in LFWJD medium-and high-dose groups(P<0.05 or P<0.01). The LFWJD low-dose group presented a decrease in the mRNA expressions of PDK1, HK2 and LDHA in uterus and ovaries as well as in the protein expressions of HK2 and LDHA in uterus and HK2 and PDK1 in ovaries(P<0.05 or P<0.01). The therapeutic mechanism of LFWJD against coagulating cold and blood stasis syndrome is related to the down-regulation of key glycolytic enzymes PDK1, HK2 and LDHA, and the inhibition of glycolytic activities in uterus and ovaries.
Asunto(s)
Ovario , Útero , Femenino , Animales , Ratas , Folículo Ovárico , Lactato Deshidrogenasa 5 , GlucólisisRESUMEN
Aerobic glycolysis is a well-known hallmark of hepatocellular carcinoma (HCC). Hence, targeting the key enzymes of this pathway is considered a novel approach to HCC treatment. The effects of sodium butyrate (NaBu), a sodium salt of the short-chain fatty acid butyrate, on aerobic glycolysis in HCC cells and the underlying mechanism are unknown. In the present study, data obtained from cell lines with mouse xenograft model revealed that NaBu inhibited aerobic glycolysis in the HCC cells in vivo and in vitro. NaBu induced apoptosis while inhibiting the proliferation of the HCC cells in vivo and in vitro. Furthermore, the compound inhibited the release of lactate and glucose consumption in the HCC cells in vitro and inhibited the production of lactate in vivo. The modulatory effects of NaBu on glycolysis, proliferation and apoptosis were related to its modulation of hexokinase 2 (HK2). NaBu downregulated HK2 expression via c-myc signalling. The upregulation of glycolysis in the HCC cells induced by sorafenib was impeded by NaBu, thereby enhancing the anti-HCC effect of sorafenib in vitro and in vivo. Thus, NaBu inhibits the expression of HK2 to downregulate aerobic glycolysis and the proliferation of HCC cells and induces their apoptosis via the c-myc pathway.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ácido Butírico/farmacología , Carcinoma Hepatocelular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Glucólisis , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Lactatos/farmacología , Neoplasias Hepáticas/metabolismo , Ratones , Sorafenib/farmacologíaRESUMEN
Cancer-related metabolic features are in part maintained by hexokinase 2 upregulation, which leads to high levels of glucose-6-phosphate (G6P) and is needed to provide energy and biomass to support rapid proliferation. Using a humanized model of the yeast Saccharomyces cerevisiae, we explored how human hexokinase 2 (HK2) behaves under different nutritional conditions. At high glucose levels, yeast presents aerobic glycolysis through a regulatory mechanism known as catabolic repression, which exerts a metabolic adaptation like the Warburg effect. At high glucose concentrations, HK2 did not translocate into the nucleus and was not able to shift the metabolism toward a highly glycolytic state, in contrast to the effect of yeast hexokinase 2 (Hxk2), which is a crucial protein for the control of aerobic glycolysis in S. cerevisiae. During the stationary phase, when glucose is exhausted, Hxk2 is shuttled out of the nucleus, ceasing catabolic repression. Cells harvested at this condition display low glucose consumption rates. However, glucose-starved cells expressing HK2 had an increased capacity to consume glucose. In those cells, HK2 localized to mitochondria, becoming insensitive to G6P inhibition. We also found that the sugar trehalose-6-phosphate (T6P) is a human HK2 inhibitor, like yeast Hxk2, but was not able to inhibit human HK1, the isoform that is ubiquitously expressed in almost all mammalian tissues. In contrast to G6P, T6P inhibited HK2 even when HK2 was associated with mitochondria. The binding of HK2 to mitochondria is crucial for cancer survival and proliferation. T6P was able to reduce the cell viability of tumor cells, although its toxicity was not impressive. This was expected as cell absorption of phosphorylated sugars is low, which might be counteracted using nanotechnology. Altogether, these data suggest that T6P may offer a new paradigm for cancer treatment based on specific inhibition of HK2.
Asunto(s)
Hexoquinasa , Fosfatos de Azúcar , Animales , Humanos , Hexoquinasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucólisis , Glucosa/metabolismo , MamíferosRESUMEN
Parkinson's disease (PD) is characterized by impaired mitochondrial function and decreased ATP levels. Aerobic glycolysis and lactate production have been shown to be upregulated in dopaminergic neurons to sustain ATP levels, but the effect of upregulated glycolysis on dopaminergic neurons remains unknown. Since lactate promotes apoptosis and α-synuclein accumulation in neurons, we hypothesized that the lactate produced upon upregulated glycolysis is involved in the apoptosis of dopaminergic neurons in PD. In this study, we examined the expression of hexokinase 2 (HK2) and lactate dehydrogenase (LDH), the key enzymes in glycolysis, and lactate levels in the substantia nigra pars compacta (SNpc) of a MPTP-induced mouse model of PD and in MPP+-treated SH-SY5Y cells. We found that the expression of HK2 and LDHA and the lactate levels were markedly increased in the SNpc of MPTP-treated mice and in MPP+-treated SH-SY5Y cells. Exogenous lactate treatment led to the apoptosis of SH-SY5Y cells. Intriguingly, lactate production and the apoptosis of dopaminergic neurons were suppressed by the application of 3-bromopyruvic acid (3-Brpa), a HK2 inhibitor, or siRNA both in vivo and in vitro. 3-Brpa treatment markedly improved the motor behaviour of MPTP-treated mice in pole test and rotarod test. Mechanistically, lactate increases the activity of adenosine monophosphate-activated protein kinase (AMPK) and suppresses the phosphorylation of serine/threonine kinase 1 (Akt) and mammalian target of rapamycin (mTOR). Together, our data suggest that upregulated HK2 and LDHA and increased lactate levels prompt the apoptosis of dopaminergic neurons in PD. Inhibition of HK2 expression attenuated the apoptosis of dopaminergic neurons by downregulating lactate production and AMPK/Akt/mTOR pathway in PD.