Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Trends Biochem Sci ; 48(8): 659-661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246022

RESUMEN

Despite its extreme scarcity, atmospheric H2 serves as an energy source for some prokaryotes. Recently, Grinter, Kropp, et al. reported the structural, biochemical, electrochemical, and spectroscopic elucidation of an underlying H2 catalyst, a [NiFe]-hydrogenase, which, owing to its extremely high affinity, facilitates the extraction of energy from ambient air.


Asunto(s)
Hidrógeno , Hidrogenasas , Hidrógeno/química , Hidrogenasas/metabolismo , Oxidación-Reducción
2.
Proc Natl Acad Sci U S A ; 119(26): e2120456119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727975

RESUMEN

The association between two intrinsically disordered proteins (IDPs) may produce a fuzzy complex characterized by a high binding affinity, similar to that found in the ultrastable complexes formed between two well-structured proteins. Here, using coarse-grained simulations, we quantified the biophysical forces driving the formation of such fuzzy complexes. We found that the high-affinity complex formed between the highly and oppositely charged H1 and ProTα proteins is sensitive to electrostatic interactions. We investigated 52 variants of the complex by swapping charges between the two oppositely charged proteins to produce sequences whose negatively or positively charged residue content was more homogeneous or heterogenous (i.e., polyelectrolytic or polyampholytic, having higher or lower absolute net charges, respectively) than the wild type. We also changed the distributions of oppositely charged residues within each participating sequence to produce variants in which the charges were segregated or well mixed. Both types of changes significantly affect binding affinity in fuzzy complexes, which is governed by both enthalpy and entropy. The formation of H1-ProTa is supported by an increase in configurational entropy and by entropy due to counterion release. The latter can be twice as large as the former, illustrating the dominance of counterion entropy in modulating the binding thermodynamics. Complexes formed between proteins with greater absolute net charges are more stable, both enthalpically and entropically, indicating that enthalpy and entropy have a mutually reinforcing effect. The sensitivity of the thermodynamics of the complex to net charge and the charge pattern within each of the binding constituents may provide a means to achieve binding specificity between IDPs.


Asunto(s)
Histonas , Proteínas Intrínsecamente Desordenadas , Receptores Inmunológicos , Entropía , Histonas/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Receptores Inmunológicos/química , Electricidad Estática
3.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714917

RESUMEN

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Asunto(s)
Arabidopsis , Manihot , Proteínas de Plantas , Plantas Modificadas Genéticamente , Potasio , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/fisiología , Plantas Modificadas Genéticamente/genética , Potasio/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Sodio/metabolismo
4.
J Exp Bot ; 75(11): 3557-3578, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38465958

RESUMEN

Modern crops exhibit diverse sensitivities to ammonium as the primary nitrogen source, influenced by environmental factors such as external pH and nutrient availability. Despite its significance, there is currently no systematic classification of plant species based on their ammonium sensitivity. We conducted a meta-analysis of 50 plant species and present a new classification method based on the comparison of fresh biomass obtained under ammonium and nitrate nutrition. The classification uses the natural logarithm of the biomass ratio as the size effect indicator of ammonium sensitivity. This numerical parameter is associated with critical factors for nitrogen demand and form preference, such as Ellenberg indicators and the repertoire of nitrogen transporters for ammonium and nitrate uptake. Finally, a comparative analysis of the developmental and metabolic responses, including hormonal balance, is conducted in two species with divergent ammonium sensitivity values in the classification. Results indicate that nitrate has a key role in counteracting ammonium toxicity in species with a higher abundance of genes encoding NRT2-type proteins and fewer of those encoding the AMT2-type proteins. Additionally, the study demonstrates the reliability of the phytohormone balance and methylglyoxal content as indicators for anticipating ammonium toxicity.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Nitrógeno/metabolismo , Concentración de Iones de Hidrógeno , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Adaptación Fisiológica
5.
Protein Expr Purif ; 223: 106559, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39089400

RESUMEN

We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 µM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 µM suggesting high affinity towards phosphate.


Asunto(s)
Basidiomycota , Proteínas de Transporte de Fosfato , Basidiomycota/metabolismo , Basidiomycota/química , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/química , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Endófitos/metabolismo , Endófitos/química , Raíces de Plantas/microbiología , Raíces de Plantas/química , Fosfatos/metabolismo , Fosfatos/química
6.
Environ Sci Technol ; 58(17): 7346-7356, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38624169

RESUMEN

Arsenic (As) contamination in soil poses a potential threat to human health via crop uptake. As-hyperaccumulator Pteris vittata serves as a model plant to study As uptake and associated mechanisms. This study focuses on a novel P/AsV transport system mediated by low-affinity phosphate transporter-B 1 family (PTB1) in P. vittata. Here, we identified two plasma-membrane-localized PTB1 genes, PvPTB1;1/1;2, in vascular plants for the first time, which were 4.4-40-fold greater in expression in P. vittata than in other Pteris ferns. Functional complementation of a yeast P-uptake mutant and enhanced P accumulation in transgenic Arabidopsis thaliana confirmed their role in P uptake. Moreover, the expression of PvPTB1;1/1;2 facilitated the transport and accumulation of As in both yeast and A. thaliana shoots, demonstrating a comparable AsV uptake capacity. Microdissection-qPCR analysis and single-cell transcriptome analysis collectively suggest that PvPTB1;1/1;2 are specifically expressed in the epidermal cells of P. vittata roots. PTB1 may play a pivotal role in efficient P recycling during phytate secretion and hydrolysis in P. vittata roots. In summary, the dual P transport mechanisms consisting of high-affinity Pht1 and low-affinity PTB1 may have contributed to the efficient P/As uptake in P. vittata, thereby contributing to efficient phytoremediation for As-contaminated soils.


Asunto(s)
Arsénico , Proteínas de Transporte de Fosfato , Fosfatos , Pteris , Pteris/metabolismo , Pteris/genética , Arsénico/metabolismo , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Contaminantes del Suelo/metabolismo , Transporte Biológico
7.
Environ Sci Technol ; 58(18): 7870-7879, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38647530

RESUMEN

Sparingly-soluble phosphate rock (PR), a raw material for P-fertilizer production, can be effectively utilized by the As-hyperaccumulator Pteris vittata but not most plants. In this study, we investigated the associated mechanisms by measuring dissolved organic carbon (DOC) and acid phosphatase in the rhizosphere, and nutrient uptake and gene expression related to the As metabolism in P. vittata. The plants were grown in a soil containing 200 mg kg-1 As and/or 1.5% PR for 30 days. Compared to the As treatment, the P. vittata biomass was increased by 33% to 4.6 g plant-1 in the As+PR treatment, corresponding to 27% decrease in its frond oxidative stress as measured by malondialdehyde. Due to PR-enhanced DOC production in the rhizosphere, the Ca, P, and As contents in P. vittata fronds were increased by 17% to 9.7 g kg-1, 29% to 5.0 g kg-1, and 57% to 1045 mg kg-1 in the As+PR treatment, thereby supporting its better growth. Besides, PR-induced rhizosphere pH increase from 5.0 to 6.9 promoted greater P uptake by P. vittata probably via upregulating low-affinity P transporters PvPTB1;1/1;2 by 3.7-4.1 folds. Consequently, 29% lower available-P induced the 3.3-fold upregulation of high-affinity P transporter PvPht1;3 in the As+PR treatment, which was probably responsible for the 58% decrease in available-As content in the rhizosphere. Consistent with the enhanced As translocation and sequestration, arsenite antiporters PvACR3/3;3 were upregulated by 1.8-4.4 folds in the As+PR than As treatment. In short, sparingly-soluble PR enhanced the Ca, P, and As availability in P. vittata rhizosphere and improved their uptake via upregulating genes related to As metabolism, suggesting its potential application for improving phytoremediation in As-contaminated soils.


Asunto(s)
Arsénico , Fosfatos , Pteris , Rizosfera , Arsénico/metabolismo , Pteris/metabolismo , Fosfatos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química
8.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831363

RESUMEN

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Asunto(s)
Anticuerpos Monoclonales , Infecciones por Coronavirus , Ensayo de Inmunoadsorción Enzimática , Virus de la Diarrea Epidémica Porcina , Glicoproteína de la Espiga del Coronavirus , Virus de la Diarrea Epidémica Porcina/inmunología , Anticuerpos Monoclonales/inmunología , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Células HEK293 , Humanos , Proteínas Recombinantes/inmunología , Ratones Endogámicos BALB C , Ratones , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria
9.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891835

RESUMEN

Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.


Asunto(s)
Proteínas de Transporte de Anión , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Transportadores de Nitrato , Nitratos , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Nitratos/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Secuencia de Aminoácidos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética
10.
Angew Chem Int Ed Engl ; 63(5): e202317402, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078790

RESUMEN

The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109  M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011  M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108  M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.

11.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563765

RESUMEN

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Asunto(s)
Avidina , Biotina , Calixarenos , Interacciones Hidrofóbicas e Hidrofílicas , Calixarenos/química , Biotina/química , Avidina/química , Avidina/metabolismo , Humanos , Propiedades de Superficie , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Preparaciones de Acción Retardada/química , Fenoles/química
12.
J Biol Chem ; 298(3): 101568, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051416

RESUMEN

Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Receptor trkA , Tropomiosina , Animales , Humanos , Factores de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso
13.
J Biol Chem ; 298(2): 101593, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051415

RESUMEN

Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.


Asunto(s)
Proteasas de Ácido Aspártico , Candidiasis , Ácido Aspártico Endopeptidasas/metabolismo , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Candida glabrata , Candidiasis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos
14.
J Mol Evol ; 91(5): 616-627, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341745

RESUMEN

Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.

15.
J Comput Chem ; 44(22): 1836-1844, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37177839

RESUMEN

Discovery of target-binding molecules, such as aptamers and peptides, is usually performed with the use of high-throughput experimental screening methods. These methods typically generate large datasets of sequences of target-binding molecules, which can be enriched with high affinity binders. However, the identification of the highest affinity binders from these large datasets often requires additional low-throughput experiments or other approaches. Bioinformatics-based analyses could be helpful to better understand these large datasets and identify the parts of the sequence space enriched with high affinity binders. BinderSpace is an open-source Python package that performs motif analysis, sequence space visualization, clustering analyses, and sequence extraction from clusters of interest. The motif analysis, resulting in text-based and visual output of motifs, can also provide heat maps of previously measured user-defined functional properties for all the motif-containing molecules. Users can also run principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analyses on whole datasets and on motif-related subsets of the data. Functionally important sequences can also be highlighted in the resulting PCA and t-SNE maps. If points (sequences) in two-dimensional maps in PCA or t-SNE space form clusters, users can perform clustering analyses on their data, and extract sequences from clusters of interest. We demonstrate the use of BinderSpace on a dataset of oligonucleotides binding to single-wall carbon nanotubes in the presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to bovine carbonic anhydrase protein. BinderSpace is openly accessible to the public via the GitHub website: https://github.com/vukoviclab/BinderSpace.


Asunto(s)
Nanotubos de Carbono , Oligonucleótidos , Animales , Bovinos , Péptidos , Biología Computacional , Análisis de Secuencia , Algoritmos
16.
Dig Dis Sci ; 68(6): 2414-2426, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808325

RESUMEN

BACKGROUND: The mechanism underlying irritable bowel syndrome (IBS), a common disease with hyperalgesia, remains elusive. The spinal cholinergic system is involved in pain modulation, but its role in IBS is unknown. AIMS: To determine whether high-affinity choline transporter 1 (CHT1, a major determinant of the cholinergic signaling capacity), is implicated in spinal modulation of stress-induced hyperalgesia. METHODS: A rat IBS model was established by water avoidance stress (WAS). Visceral sensations were detected by abdominal withdrawal reflex (AWR) and visceromotor response (VMR) to colorectal distension (CRD). Abdominal mechanical sensitivity was determined by von Frey filaments (VFFs) test. RT-PCR, Western blot, and immunostaining were performed for spinal CHT1 expression. Spinal acetylcholine (ACh) was measured by ELISA; the influence of spinal CHT1 on hyperalgesia were evaluated by intrathecal administration of MKC-231 (a choline uptake enhancer) and hemicholinium-3 (HC-3, a specific inhibitor of CHT1). Minocycline treatment was used to explore the role of spinal microglia in hyperalgesia. RESULTS: After 10 days of WAS, AWR scores and VMR magnitude to CRD, and the number of withdrawal events in VFF test were increased. Double-labeling showed that CHT1 in the dorsal horn was expressed in most of the neurons and almost all the microglia. The CHT1 expression and ACh levels in the spinal cord and the density of CHT1-positive cell in the spinal dorsal horn were enhanced in WAS-exposed rats. HC-3 enhanced pain responses in WAS rats; MKC-231 alleviated pain in WAS rats by upregulating CHT1 expression and increasing ACh production in the spinal cord. Furthermore, microglial activation in the spinal dorsal horn promoted the stress-induced hyperalgesia, and MKC-231 achieved analgesic effects by inhibiting the spinal microglial activation. CONCLUSIONS: CHT1 exerts antinociceptive effects in spinal modulation of chronic stress-induced hyperalgesia by increasing ACh synthesis and suppressing microglial activation. MKC-231 has potential for treating disorders accompanied by hyperalgesia.


Asunto(s)
Hiperalgesia , Síndrome del Colon Irritable , Ratas , Animales , Hiperalgesia/inducido químicamente , Ratas Sprague-Dawley , Síndrome del Colon Irritable/metabolismo , Médula Espinal/metabolismo , Acetilcolina/farmacología , Dolor , Colinérgicos/efectos adversos , Colinérgicos/metabolismo
17.
J Allergy Clin Immunol ; 149(3): 1018-1030.e11, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34418424

RESUMEN

BACKGROUND: Clinical management of allergic diseases has been hampered by the lack of safe and convenient tests to reliably identify culprit allergens and to closely follow changes in disease activity over time. Because allergy diagnosis is a complex and laborious multistep procedure, there is an urgent need for simpler but still functionally accurate ex vivo assays allowing objective diagnosis, substantiating treatment choices, and quantifying therapeutic responses. OBJECTIVE: In this study, we sought to develop a novel functional cell-based assay that relies on passive sensitization of allergic effector cells with patient serum, circumventing current limitations in allergy diagnosis. METHODS: We genetically engineered a conditional homeobox B8 (Hoxb8)-immortalized progenitor line from the bone marrow of mice that are transgenic for the human high-affinity IgE receptor (FcεRIα). These cells can be reproducibly differentiated into mature Hoxb8 mast cells within 5 days of culture in virtually unlimited numbers. RESULTS: We demonstrate that the established Hoxb8 mast cell assay can be used to accurately measure total IgE levels, identify culprit allergens, longitudinally monitor allergen-specific immunotherapy, and potentially determine the time point of tolerance induction upon allergen-specific immunotherapy in patients with allergy. To facilitate the analysis of large testing volumes, we demonstrate a proof-of-concept for a high-throughput screening application based on fluorescent cell barcoding using the engineered Hoxb8 mast cells. CONCLUSIONS: Our results indicate that this novel mast cell assay could represent a valuable tool to support clinicians in the identification of IgE-mediated allergies and in the quantification of treatment efficacy as well as duration of therapeutic response.


Asunto(s)
Hipersensibilidad , Mastocitos , Alérgenos/metabolismo , Animales , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/metabolismo , Inmunoglobulina E/metabolismo , Ratones , Receptores de IgE/metabolismo
18.
Hemoglobin ; 47(4): 140-144, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37752804

RESUMEN

We present a new hemoglobin variant, Hb Raklev, characterized by the substitution of leucine with glutamine at position 75 in the ß-globin chain. This variant was discovered inadvertently during an HbA1c evaluation using high performance liquid chromatography in a symptomless 54-year-old Caucasian woman, with the same variant also identified in her 16-year-old daughter. Purification of the hemoglobin revealed possibly diminished 2,3-bisphosphoglycerate (2,3-BPG) sensitivity, which may result in heightened oxygen affinity. Notably, two variants have been previously documented at this location: the unstable Hb Atlanta and the high-affinity Hb Pasadena.


Asunto(s)
Hemoglobinas Anormales , Globinas beta , Femenino , Humanos , Persona de Mediana Edad , Adolescente , Globinas beta/genética , Globinas beta/química , Leucina , Glutamina , Hemoglobinas Anormales/genética , Hemoglobinas Anormales/química , Cromatografía Líquida de Alta Presión
19.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674928

RESUMEN

SH3 domains are common protein binding modules. The target sequence of SH3 domains is usually a proline-rich motif (PRM) containing a minimal "PxxP" sequence. The mechanism of how different SH3 domains specifically choose their targets from vast PxxP-containing sequences is still not very clear, as many reported SH3/PRM interactions are weak and promiscuous. Here, we identified the binding of the SH3 domain of ASAP1 to the PRM of MICAL1 with a sub-µM binding affinity, and determined the crystal structure of ASAP1-SH3 and MICAL1-PRM complex. Our structural and biochemical analyses revealed that the target-binding pocket of ASAP1-SH3 contains two negatively charged patches to recognize the "xPx + Px+" sequence in MICAL1-PRM and consequently strengthen the interaction, differing from the typical SH3/PRM interaction. This unique PRM-binding pocket is also found in the SH3 domains of GTPase Regulator associated with focal adhesion kinase (GRAF) and Src kinase associated phosphoprotein 1 (SKAP1), which we named SH3AGS. In addition, we searched the Swiss-Prot database and found ~130 proteins with the SH3AGS-binding PRM in silico. Finally, gene ontology analysis suggests that the strong interaction between the SH3AGS-containing proteins and their targets may play roles in actin cytoskeleton regulation and vesicle trafficking.


Asunto(s)
Prolina , Dominios Homologos src , Sitios de Unión , Secuencia de Aminoácidos , Prolina/metabolismo , Unión Proteica
20.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446406

RESUMEN

Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.


Asunto(s)
Toxinas Bacterianas , Neoplasias , Humanos , Ligandos , Toxinas Bacterianas/metabolismo , Neoplasias/tratamiento farmacológico , Receptores de Superficie Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda