Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(18): e2122052119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476523

RESUMEN

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species' life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.


Asunto(s)
Ctenóforos , Animales , Femenino , Larva , Estadios del Ciclo de Vida , Parto , Embarazo , Reproducción
2.
Proc Natl Acad Sci U S A ; 119(33): e2205564119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943983

RESUMEN

Male-female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male-female coevolution.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Escarabajos , Conducta Sexual Animal , Animales , Escarabajos/metabolismo , Femenino , Masculino , Filogenia , Reproducción
3.
Mol Ecol ; 33(5): e17278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268086

RESUMEN

Colour is an important visual cue that can correlate with sex, behaviour, life history or ecological strategies, and has evolved divergently and convergently across animal lineages. Its genetic basis in non-model organisms is rarely known, but such information is vital for determining the drivers and mechanisms of colour evolution. Leveraging genetic admixture in a rare contact zone between oviparous and viviparous common lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise morphologically indistinguishable reproductive modes differ in their ventral colouration (from pale to vibrant yellow) and intensity of melanic patterning. We find no association between female colouration and reproductive investment, and no evidence for selection on colour. Using a combination of genetic mapping and transcriptomic evidence, we identified two candidate genes associated with ventral colour differentiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metabolism and melanin synthesis respectively. Ventral melanic spots were associated with two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) genes. Using genome re-sequencing data, our results show that fixed coding mutations in the candidate genes cannot account for differences in colouration. Taken together, our findings show that the evolution of ventral colouration and its associations across common lizard lineages is variable. A potential genetic mechanism explaining the flexibility of ventral colouration may be that colouration in common lizards, but also across squamates, is predominantly driven by regulatory genetic variation.


Asunto(s)
Lagartos , Animales , Femenino , Lagartos/metabolismo , Color
4.
Mol Ecol ; 33(16): e17465, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38994907

RESUMEN

The ecological role of heritable phenotypic variation in free-living populations remains largely unknown. Knowledge of the genetic basis of functional ecological processes can link genomic and phenotypic diversity, providing insight into polymorphism evolution and how populations respond to environmental changes. By quantifying the marine diet of Atlantic salmon, we assessed how foraging behaviour changes along the ontogeny, and in relation to genetic variation in two loci with major effects on age at maturity (six6 and vgll3). We used a two-component, zero-inflated negative binomial model to simultaneously quantify foraging frequency and foraging outcome, separately for fish and crustaceans diets. We found that older salmon forage for both prey types more actively (as evidenced by increased foraging frequency), but with a decreased efficiency (as evidenced by fewer prey in the diet), suggesting an age-dependent shift in foraging dynamics. The vgll3 locus was linked to age-dependent changes in foraging behaviour: Younger salmon with vgll3LL (the genotype associated with late maturation) tended to forage crustaceans more often than those with vgll3EE (the genotype associated with early maturation), whereas the pattern was reversed in older salmon. Vgll3 LL genotype was also linked to a marginal increase in fish acquisition, especially in younger salmon, while six6 was not a factor explaining the diet variation. Our results suggest a functional role for marine feeding behaviour linking genomic diversity at vgll3 with age at maturity among salmon, with potential age-dependent trade-offs maintaining the genetic variation. A shared genetic basis between dietary ecology and age at maturity likely subjects Atlantic salmon populations to evolution induced by bottom-up changes in marine productivity.


Asunto(s)
Genotipo , Salmo salar , Animales , Salmo salar/genética , Variación Genética , Dieta , Conducta Alimentaria
5.
Mol Ecol ; 33(2): e17254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146910

RESUMEN

In Atlantic salmon (Salmo salar), sea age is a major life history trait governed by a sex-specific trade-off between reproductive success and survival. In this issue of Molecular Ecology, Besnier et al. (Molecular Ecology, 2023) found evidence to suggest that the disassociation between sea age and major effect loci, including the previously identified candidate genes vgll3 and six6, may be related to the recently observed trend towards slower growth and later maturation. These results are of importance because they challenge the prevailing view that evolution moves in a slow shuffle, and they provide a pertinent example of how an optimal phenotype can change due to growth-driven plasticity and lead to contemporary molecular and phenotypic evolution.


Asunto(s)
Rasgos de la Historia de Vida , Salmo salar , Masculino , Femenino , Animales , Fenotipo , Reproducción/genética , Salmo salar/genética
6.
J Evol Biol ; 37(10): 1205-1214, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39110030

RESUMEN

Trade-offs are a fundamental concept in evolutionary biology because they are thought to explain much of nature's biological diversity, from variation in life-histories to differences in metabolism. Despite the predicted importance of trade-offs, they are notoriously difficult to detect. Here we contribute to the existing rich theoretical literature on trade-offs by examining how the shape of the distribution of resources or metabolites acquired in an allocation pathway influences the strength of trade-offs between traits. We further explore how variation in resource distribution interacts with two aspects of pathway complexity (i.e., the number of branches and hierarchical structure) affects tradeoffs. We simulate variation in the shape of the distribution of a resource by sampling 106 individuals from a beta distribution with varying parameters to alter the resource shape. In a simple "Y-model" allocation of resources to two traits, any variation in a resource leads to slopes less than -1, with left skewed and symmetrical distributions leading to negative relationships between traits, and highly right skewed distributions associated with positive relationships between traits. Adding more branches further weakens negative and positive relationships between traits, and the hierarchical structure of pathways typically weakens relationships between traits, although in some contexts hierarchical complexity can strengthen positive relationships between traits. Our results further illuminate how variation in the acquisition and allocation of resources, and particularly the shape of a resource distribution and how it interacts with pathway complexity, makes its challenging to detect trade-offs. We offer several practical suggestions on how to detect trade-offs given these challenges.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Animales
7.
J Evol Biol ; 37(9): 1125-1133, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39145390

RESUMEN

Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here, we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or to a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation in immune-stimulated flies between lifespan and the proportion of time cybrids spent moving while alive. Our results suggests that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.


Asunto(s)
Drosophila melanogaster , Longevidad , Mitocondrias , Animales , Drosophila melanogaster/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Femenino , Mitocondrias/genética , Fertilidad
8.
J Evol Biol ; 37(4): 442-450, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38456649

RESUMEN

Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation between life span and the proportion of time cybrids spent moving while alive. Our results suggest that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.


Asunto(s)
Drosophila melanogaster , Mitocondrias , Animales , Femenino , Drosophila melanogaster/fisiología , Mitocondrias/genética , Longevidad/genética , Genotipo , Fertilidad/genética
9.
Ecol Lett ; 26(9): 1548-1558, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37366181

RESUMEN

Photoperiod is a common cue for seasonal plasticity and phenology, but climate change can create cue-environment mismatches for organisms that rely on it. Evolution could potentially correct these mismatches, but phenology often depends on multiple plastic decisions made during different life stages and seasons that may evolve separately. For example, Pararge aegeria (Speckled wood butterfly) has photoperiod-cued seasonal life history plasticity in two different life stages: larval development time and pupal diapause. We tested for climate change-associated evolution of this plasticity by replicating common garden experiments conducted on two Swedish populations 30 years ago. We found evidence for evolutionary change in the contemporary larval reaction norm-although these changes differed between populations-but no evidence for evolution of the pupal reaction norm. This variation in evolution across life stages demonstrates the need to consider how climate change affects the whole life cycle to understand its impacts on phenology.


Asunto(s)
Mariposas Diurnas , Animales , Estaciones del Año , Cambio Climático , Larva , Estadios del Ciclo de Vida
10.
Ecol Lett ; 26(4): 540-548, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36756864

RESUMEN

Heterogeneity among individuals in fitness components is what selection acts upon. Evolutionary theories predict that selection in constant environments acts against such heterogeneity. But observations reveal substantial non-genetic and also non-environmental variability in phenotypes. Here, we examine whether there is a relationship between selection pressure and phenotypic variability by analysing structured population models based on data from a large and diverse set of species. Our findings suggest that non-genetic, non-environmental variation is in general neither truly neutral, selected for, nor selected against. We find much variations among species and populations within species, with mean patterns suggesting nearly neutral evolution of life-course variability. Populations that show greater diversity of life courses do not show, in general, increased or decreased population growth rates. Our analysis suggests we are only at the beginning of understanding the evolution and maintenance of non-genetic non-environmental variation.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Fenotipo , Selección Genética
11.
Am Nat ; 202(6): 767-784, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033178

RESUMEN

AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.


Asunto(s)
Germinación , Rasgos de la Historia de Vida , Evolución Biológica , Plantas , Reproducción
12.
Proc Biol Sci ; 290(2000): 20230139, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37282537

RESUMEN

Age-related changes in the patterns of local relatedness (kinship dynamics) can be a significant selective force shaping the evolution of life history and social behaviour. In humans and some species of toothed whales, average female relatedness increases with age, which can select for a prolonged post-reproductive lifespan in older females due to both costs of reproductive conflict and benefits of late-life helping of kin. Killer whales (Orcinus orca) provide a valuable system for exploring social dynamics related to such costs and benefits in a mammal with an extended post-reproductive female lifespan. We use more than 40 years of demographic and association data on the mammal-eating Bigg's killer whale to quantify how mother-offspring social relationships change with offspring age and identify opportunities for late-life helping and the potential for an intergenerational reproductive conflict. Our results suggest a high degree of male philopatry and female-biased budding dispersal in Bigg's killer whales, with some variability in the dispersal rate for both sexes. These patterns of dispersal provide opportunities for late-life helping particularly between mothers and their adult sons, while partly mitigating the costs of mother-daughter reproductive conflict. Our results provide an important step towards understanding why and how menopause has evolved in Bigg's killer whales.


Asunto(s)
Orca , Humanos , Animales , Adulto , Masculino , Femenino , Anciano , Madres , Reproducción , Longevidad , Conducta Social
13.
Proc Biol Sci ; 290(1998): 20222460, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37132240

RESUMEN

Seed mass is an ecologically important trait that often differs considerably among ecotypes. Yet, because few studies examine the impacts of seed mass on adult life-history traits, its role in local adaptation is unclear. In this study, using accessions of Panicum hallii that spanned the two major ecotypes, we examined whether covariation between seed mass, seedling and reproductive traits impacts ecotypic divergence and local adaptation. The perennial grass P. hallii has two distinct ecotypes-a large-seeded upland ecotype adapted to xeric environments and a small-seeded lowland ecotype adapted to mesic environments. In the greenhouse, seed mass varied greatly across P. hallii genotypes in a manner consistent with ecotypic divergence. Seed mass covaried significantly with several seedling and reproductive traits. At field sites representing the habitats of the two ecotypes, seed mass had different impacts on seedling and adult recruitment: selection favoured large seeds in upland habitat and small seeds in lowland habitat, which was consistent with local adaptation. By demonstrating the central role of seed mass in ecotypic differences in P. hallii and its importance to seedling and adult recruitment under field conditions, these studies show that early life-history traits can promote local adaptation and potentially explain ecotype formation.


Asunto(s)
Adaptación Fisiológica , Poaceae , Adaptación Fisiológica/genética , Ecotipo , Fenotipo , Ecosistema
14.
Proc Biol Sci ; 290(1997): 20230096, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37072039

RESUMEN

In varying environments, it is beneficial for organisms to utilize available cues to infer the conditions they may encounter and express potentially favourable traits. However, external cues can be unreliable or too costly to use. We consider an alternative strategy where organisms exploit internal sources of information. Even without sensing environmental cues, their internal states may become correlated with the environment as a result of selection, which then form a memory that helps predict future conditions. To demonstrate the adaptive value of such internal cues in varying environments, we revisit the classic example of seed dormancy in annual plants. Previous studies have considered the germination fraction of seeds and its dependence on environmental cues. In contrast, we consider a model of germination fraction that depends on the seed age, which is an internal state that can serve as a memory. We show that, if the environmental variation has temporal structure, then age-dependent germination fractions will allow the population to have an increased long-term growth rate. The more the organisms can remember through their internal states, the higher the growth rate a population can potentially achieve. Our results suggest experimental ways to infer internal memory and its benefit for adaptation in varying environments.


Asunto(s)
Evolución Biológica , Señales (Psicología) , Adaptación Fisiológica , Germinación , Aclimatación , Semillas
15.
Mol Ecol ; 32(18): 5071-5088, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584177

RESUMEN

Acquisition of new genes often results in the emergence of novel functions and is a key step in lineage-specific adaptation. As a group of sessile crustaceans, barnacles establish permanent attachment through initial cement secretion at the larval phase followed by continuous cement secretion in juveniles and adults. However, the origins and evolution of barnacle larval and adult cement proteins remain poorly understood. By performing microdissection of larval cement glands, transcriptome and shotgun proteomics and immunohistochemistry validation, we identified 30 larval and 27 adult cement proteins of the epibiotic turtle barnacle Chelonibia testudinaria, of which the majority are stage- and barnacle-specific. While only two proteins, SIPC and CP100K, were expressed in both larvae and adults, detection of protease inhibitors and the cross-linking enzyme lysyl oxidase paralogs in larvae and adult cement. Other barnacle-specific cement proteins such as CP100k and CP52k likely share a common origin dating back at least to the divergence of Rhizocephala and Thoracica. Different CP52k paralogues could be detected in larval and adult cement, suggesting stage-specific cement proteins may arise from duplication followed by changes in expression timing of the duplicates. Interestingly, the biochemical properties of larval- and adult-specific CP52k paralogues exhibited remarkable differences. We conclude that barnacle larval and adult cement systems evolved independently, and both emerged from co-option of existing genes and de novo formation, duplication and functional divergence of lineage-specific cement protein genes. Our findings provide important insights into the evolutionary mechanisms of bioadhesives in sessile marine invertebrates.


Asunto(s)
Thoracica , Animales , Thoracica/genética , Thoracica/metabolismo , Proteínas/genética , Larva/genética , Larva/metabolismo , Transcriptoma/genética
16.
Mol Ecol ; 32(4): 920-935, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464913

RESUMEN

Kissing bugs (Hempitera: Reduviidae) are obligately and exclusively blood feeding insects. Vertebrate blood is thought to provide insufficient B vitamins to insects, which rely on symbiotic relationships with bacteria that provision these nutrients. Kissing bugs harbour environmentally acquired bacteria in their gut lumen, without which they are unable to develop to adulthood. Rhodococcus rhodnii was initially identified as the sole symbiont of Rhodnius prolixus, but modern studies of the kissing bug microbiome suggest that R. rhodnii is not always present or abundant in wild-caught individuals. We asked whether R. rhodnii or other bacteria alone could function as symbionts of R. prolixus. We produced insects with no bacteria (axenic) or with known microbiomes (gnotobiotic). Gnotobiotic insects harbouring R. rhodnii alone developed faster, had higher survival, and laid more eggs than those harbouring other bacterial monocultures, including other described symbionts of kissing bugs. R. rhodnii grew to high titre in the guts of R. prolixus while other tested species were found at much lower abundance. Rhodococcus species tested had nearly identical B vitamin biosynthesis genes, and dietary supplementation of B vitamins had a relatively minor effect on development and survival of gnotobiotic R. prolixus. Our results indicate that R. prolixus have a higher fitness when harbouring R. rhodnii than other bacteria tested, that this may be due to R. rhodnii existing at higher titres and providing more B vitamins to the host, and that symbiont B vitamin synthesis is probably a necessary but not sufficient function of gut bacteria in kissing bugs.


Asunto(s)
Rhodnius , Complejo Vitamínico B , Humanos , Animales , Rhodnius/genética , Rhodnius/microbiología , Reproducción
17.
Mol Ecol ; 32(13): 3382-3402, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009938

RESUMEN

Understanding the drivers of evolutionary innovation provides a crucial perspective of how evolutionary processes unfold across taxa and ecological systems. It has been hypothesised that the Southern Ocean provided ecological opportunities for novelty in the past. However, the drivers of innovation are challenging to pinpoint as the evolutionary genetics of Southern Ocean fauna are influenced by Quaternary glacial-interglacial cycles, oceanic currents and species ecology. Here we examined the genome-wide single nucleotide polymorphisms of the Southern Ocean brittle stars Ophionotus victoriae (five arms, broadcaster) and O. hexactis (six arms, brooder). We found that O. victoriae and O. hexactis are closely-related species with interspecific gene flow. During the late Pleistocene, O. victoriae likely persisted in a connected deep water refugium and in situ refugia on the Antarctic continental shelf and around Antarctic islands; O. hexactis persisted exclusively within in situ island refugia. Within O. victoriae, contemporary gene flow linking to the Antarctic Circumpolar Current, regional gyres and other local oceanographic regimes was observed. Gene flow connecting West and East Antarctic islands near the Polar Front was also detected in O. hexactis. A strong association was detected between outlier loci and salinity in O. hexactis. Both O. victoriae and O. hexactis are associated with genome-wide increase in alleles at intermediate-frequencies; the alleles associated with this peak appear to be species specific, and these intermediate-frequency variants are far more excessive in O. hexactis. We hypothesise that the peak in alleles at intermediate frequencies could be related to adaptation in the recent past, linked to evolutionary innovations of increase in arm number and a switch to brooding from broadcasting, in O. hexactis.


Asunto(s)
Equinodermos , Variación Genética , Animales , Regiones Antárticas , Variación Genética/genética , Equinodermos/genética , Evolución Biológica , Genómica
18.
Mol Ecol ; 32(13): 3733-3746, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009964

RESUMEN

Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites (Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free-living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco-evolutionary dynamics on infection outcomes, including parasite co-existence through the lifetime of the host.


Asunto(s)
Interacciones Huésped-Parásitos , Rasgos de la Historia de Vida , Parásitos , Animales , Evolución Biológica , Biota , Mamíferos
19.
J Evol Biol ; 36(11): 1630-1640, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885147

RESUMEN

The ecological and life history drivers of the diversification of reproductive modes in early vertebrates are not fully understood. Sharks, rays and chimaeras (group Chondrichthyes) have an unusually diverse variety of reproductive modes and are thus an ideal group to test the factors driving the evolution of reproductive complexity. Here, using 960 species representing all major Chondrichthyes taxa, we reconstruct the evolution of their reproduction modes and investigate the ecological and life history predictors of reproduction. We show that the ancestral Chondrichthyes state was egg-laying and find multiple independent transitions between egg-laying and live-bearing via an intermediate state of yolk-only live-bearing. Using phylogenetically informed analysis, we also show that live-bearing species have larger body size and larger offspring than egg-laying species. In addition, live-bearing species are distributed over shallow to intermediate depths, while egg-layers are typically found in deeper waters. This suggests that live-bearing is more closely associated with pelagic, rather than demersal habitats. Taken together, using a basal vertebrate group as a model, we demonstrat how reproductive mode co-evolves with environmental conditions and life-history traits.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Reproducción , Oviposición , Peces , Ecosistema , Evolución Biológica , Filogenia
20.
J Exp Biol ; 226(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767765

RESUMEN

Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.


Asunto(s)
Ecosistema , Peces , Animales , Peces/genética , Peces/metabolismo , Agua Dulce , Larva/genética , Osmorregulación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda