Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2213528120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595700

RESUMEN

Flow batteries are a promising energy storage solution. However, the footprint and capital cost need further reduction for flow batteries to be commercially viable. The flow cell, where electron exchange takes place, is a central component of flow batteries. Improving the volumetric power density of the flow cell (W/Lcell) can reduce the size and cost of flow batteries. While significant progress has been made on flow battery redox, electrode, and membrane materials to improve energy density and durability, conventional flow batteries based on the planar cell configuration exhibit a large cell size with multiple bulky accessories such as flow distributors, resulting in low volumetric power density. Here, we introduce a submillimeter bundled microtubular (SBMT) flow battery cell configuration that significantly improves volumetric power density by reducing the membrane-to-membrane distance by almost 100 times and eliminating the bulky flow distributors completely. Using zinc-iodide chemistry as a demonstration, our SBMT cell shows peak charge and discharge power densities of 1,322 W/Lcell and 306.1 W/Lcell, respectively, compared with average charge and discharge power densities of <60 W/Lcell and 45 W/Lcell, respectively, of conventional planar flow battery cells. The battery cycled for more than 220 h corresponding to >2,500 cycles at off-peak conditions. Furthermore, the SBMT cell has been demonstrated to be compatible with zinc-bromide, quinone-bromide, and all-vanadium chemistries. The SBMT flow cell represents a device-level innovation to enhance the volumetric power of flow batteries and potentially reduce the size and cost of the cells and the entire flow battery.


Asunto(s)
Líquidos Corporales , Bromuros , Tamaño de la Célula , Fibras de la Dieta , Zinc
2.
Antimicrob Agents Chemother ; 68(2): e0108023, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38131673

RESUMEN

Seventy-five years ago, first-generation tetracyclines demonstrated limited efficacy in the treatment of tuberculosis but were more toxic than efficacious. We performed a series of pharmacokinetic/pharmacodynamic (PK/PD) experiments with a potentially safer third-generation tetracycline, omadacycline, for the treatment of multidrug-resistant tuberculosis (MDR-TB). Mycobacterium tuberculosis (Mtb) H37Rv and an MDR-TB clinical strain (16D) were used in the minimum inhibitory concentration (MIC) and static concentration-response studies in test tubes, followed by a PK/PD study using the hollow fiber system model of TB (HFS-TB) that examined six human-like omadacycline doses. The inhibitory sigmoid maximal effect (Emax) model and Monte Carlo experiments (MCEs) were used for data analysis and clinical dose-finding, respectively. The omadacycline MIC for both Mtb H37Rv and MDR-TB clinical strain was 16 mg/L but dropped to 4 mg/L with daily drug supplementation to account for omadacycline degradation. The Mycobacteria Growth Indicator Tube MIC was 2 mg/L. In the test tubes, omadacycline killed 4.39 log10 CFU/mL in 7 days. On Day 28 of the HFS-TB study, the Emax was 4.64 log10 CFU/mL, while exposure mediating 50% of Emax (EC50) was an area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 22.86. This translates to PK/PD optimal exposure or EC80 as AUC0-24/MIC of 26.93. The target attainment probability of the 300-mg daily oral dose was 90% but fell at MIC ≧4 mg/L. Omadacycline demonstrated efficacy and potency against both drug-susceptible and MDR-TB. Further studies are needed to identify the omadacycline effect in combination therapy for the treatment of both drug-susceptible and MDR-TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tetraciclinas/farmacología , Pruebas de Sensibilidad Microbiana
3.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259101

RESUMEN

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Azitromicina/farmacología , Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium , Enfermedades Pulmonares/microbiología
4.
Antimicrob Agents Chemother ; 68(3): e0154123, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319075

RESUMEN

Bacterial infections, including those caused by Pseudomonas aeruginosa, often lead to sepsis, necessitating effective antibiotic treatment like carbapenems. The key pharmacokinetic/pharmacodynamic (PK/PD) index correlated to carbapenem efficacy is the fraction time of unbound plasma concentration above the minimum inhibitory concentration (MIC) of the pathogen (%fT > MIC). While multiple targets exist, determining the most effective one for critically ill patients remains a matter of debate. This study evaluated meropenem's bactericidal potency and its ability to combat drug resistance in Pseudomonas aeruginosa under three representative PK/PD targets: 40% fT > MIC, 100% fT > MIC, and 100% fT > 4× MIC. The hollow fiber infection model (HFIM) was constructed, validated, and subsequently inoculated with a substantial Pseudomonas aeruginosa load (1 × 108 CFU/mL). Different meropenem regimens were administered to achieve the specified PK/PD targets. At specified intervals, samples were collected from the HFIM system and subjected to centrifugation. The resulting supernatant was utilized to determine drug concentrations, while the precipitates were used to track changes in both total and drug-resistant bacterial populations over time by the spread plate method. The HFIM accurately reproduced meropenem's pharmacokinetics in critically ill patients. All three PK/PD target groups exhibited a rapid bactericidal response within 6 h of the initial treatment. However, the 40% fT > MIC and 100% fT > MIC groups subsequently showed bacterial resurgence and resistance, whereas the 100% fT > 4× MIC group displayed sustained bactericidal activity with no evidence of drug resistance. The HFIM system revealed that maintaining 100% fT > 4× MIC offers a desirable microbiological response for critically ill patients, demonstrating strong bactericidal capacity and effective prevention of drug resistance.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Meropenem/uso terapéutico , Enfermedad Crítica , Antibacterianos/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Pruebas de Sensibilidad Microbiana
5.
Small ; 20(20): e2309409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368263

RESUMEN

Translating carbon molecular sieve (CMS) membranes into highly scalable hollow fiber geometry with ultra-thin selective layer (<1 µm) for gas separation remains as great challenge. The porous support layer of precursor hollow fiber membranes is prone to collapse during pyrolysis, which induces thick skin layer (15-50 µm) of CMS hollow fiber membranes. Here, a novel strategy is present to obtain an ultra-thin selective skin layer by carbonization of hollow fiber membranes with porous skin. P84-based defect-free CMS hollow fiber membranes with ultra-thin selective skin layer (0.9 µm) for gas separation are prepared without any coating or complex chemical pretreatment. Compared with the carbon membranes derived from defect-free fibers, the H2 permeance (93.9 GPU) of CMS membranes derived from the porous fibers increases ≈1353% with comparable selectivity of H2/CH4 (143) and higher H2/N2 (120). Furthermore, the porous fibers are pre-aged near the Tg in N2 conditions before carbonization, and the H2 permeance of the derived CMS hollow fiber membranes reached 147 GPU (increased 2180%). It is a new facile way to prepare CMS hollow fiber membranes with ultra-thin selective layer by porous fibers, demonstrating its versatile potential in gas separation or organic liquids separation.

6.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726747

RESUMEN

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Asunto(s)
Productos Biológicos , Fosfolipasas de Tipo C , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Simulación del Acoplamiento Molecular , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Humanos , Compuestos Alílicos , Fenoles
7.
J Artif Organs ; 27(1): 1-6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36914927

RESUMEN

Hollow fiber membrane is incorporated into an extracorporeal membrane oxygenator (ECMO), and the function of the membrane determines the ECMO's functions, such as gas transfer rate, biocompatibility, and durability. In Japan, the membrane oxygenator to assist circulation and ventilation is approved for ECMO support. However, in all cases, the maximum use period has been only 6 h, and so-called 'off-label use' is common for ECMO support of severely ill COVID-19 patients. Under these circumstances, the HLS SET Advanced (Getinge Group Japan K.K.) was approved in 2020 for the first time in Japan as a membrane oxygenator with a two-week period of use. Following this membrane oxygenator, it is necessary to establish a domestic ECMO system that is approved for long-term use and suitable for supporting patients. Looking back on the evolution of ECMO so far, Japanese researchers and manufacturers have also contributed to the developments of ECMO globally. Currently, excellent membrane oxygenators and systems have been marketed by Japanese manufacturers and some of them are globally acclaimed, but in fact, most of the ECMO membranes are not made in Japan. Fortunately, Japan has led the world in the fields of membrane separation technology and hollow fiber membrane production. In the wake of this pandemic, from the perspective of medical and economic security, the practical use of purely domestic hollow fiber membranes and membrane oxygenators for long-term ECMO is imperative in anticipation of the next pandemic.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Oxigenadores de Membrana , Humanos , Diseño de Equipo , Japón
8.
Mikrochim Acta ; 191(6): 329, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743300

RESUMEN

A miniaturized analytical methodology was introduced based on the combination of a direct and online hollow fiber microextraction method with smartphone color detection. The method was used for the determination of formaldehyde (target analyte) in fabric and wastewater samples. In this regard, two reagents including ammonium acetate buffer and acetylacetone were added to the formaldehyde samples to create a colored compound. The colored compound was extracted from the sample by using the hollow fiber liquid-phase microextraction method, the extracted phase was not taken out of the extraction box and was directly transferred into a specially designed detection cell, and a smartphone was applied for in-situ color sensing and data readout. This combination gathered the advantages of both state-of-the-art microextraction techniques and smartphone sensing. Formaldehyde, as a carcinogenic compound widely used in paint and clothing industries, was selected as a model test. Factors affecting extraction efficiency were investigated and optimized, including the type of organic solvents, reagent concentration, salt, pH, stirring speed, reaction temperature, and extraction time. The linear region of the method under optimal conditions was 40-1500 µg L-1 for wastewater samples and 0.3-11.2 mg kg-1 for fabrics. The limit of detection and limit of qualification were 13 and 40 µg L-1, respectively. The relative standard deviations for concentrations of 100 and 1000 µg L-1 were 6% and 4%, respectively. To evaluate the application of the method for real samples, types of fabric and two samples of oil refinery wastewater were selected. The relative recovery in real samples was 84-98%. The results of the analytical parameters of the method show that the developed method can be used as an efficient method to determine formaldehyde in real samples.

9.
Mikrochim Acta ; 191(2): 107, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240908

RESUMEN

A novel strategy based on gradient porous hollow fiber membrane (GPF) is proposed for the modular assembly of enzyme-nanozyme cascade systems. The porous structure of GPF provided sufficient specific surface area, while the gradient structure effectively minimized the leaching of enzymes and nanozymes. To enhance stability, we prepared and immobilized metal-organic framework (MOF) nanozymes, resulting in the fabrication of GPF-MOF with excellent stability and reusability for colorimetric H2O2 detection. To improve specificity and expand the detection range, micro-crosslinked natural enzymes were modularly assembled, using glucose oxidase as the model enzyme. The assembled system, GPF-mGOx@MOF, achieved a low detection limit of 0.009 mM and a linear range of 0.2 to 11 mM. The sensor retained 87.2% and 80.7% of initial activity after being stored for 49 days and 9 recycles, respectively. Additionally, the reliability of the biosensor was validated through glucose determination of human blood and urine samples, yielding comparable results to a commercial glucose meter.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/química , Glucosa/química , Peróxido de Hidrógeno/química , Reproducibilidad de los Resultados , Glucosa Oxidasa/química
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673817

RESUMEN

Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.


Asunto(s)
Biotecnología , Polímeros , Sulfonas , Animales , Humanos , Materiales Biocompatibles/química , Biotecnología/métodos , Polímeros/química , Sulfonas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
11.
J Environ Manage ; 365: 121525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897085

RESUMEN

As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Purificación del Agua/métodos , Purificación del Agua/instrumentación
12.
J Environ Manage ; 358: 120894, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643621

RESUMEN

Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m2 h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m2.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m2.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.


Asunto(s)
Bentonita , Bentonita/química , Salinidad , Permeabilidad , Calcio/química , Membranas Artificiales
13.
J Environ Manage ; 350: 119633, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039707

RESUMEN

In order to achieve zero discharge and resource utilization of industrial high salt wastewater, a hybrid system of mechanical vapor recompression (MVR) and hollow fiber vacuum membrane distillation (HFVMD) was constructed, and several experiments of air tightness, single working condition and multiple working conditions were carried out with ammonium chloride solution as feed, then thermal economic performance were evaluated via a single factor analysis method. The obtained results showed that the system had excellent airtightness to ensure normal evaporation experiment, and high separation efficiency of 99.9% and lower evaporation energy consumption to achieve high efficient separation by combining the advantages of the hydrophobic membrane evaporation and latent heat recovery in view of MVR and HFVMD technologies. Furthermore, increasing feed temperature and feed flow rate increased evaporation rate and decreased evaporation energy consumption, while increasing feed concentration decreased evaporation rate and increased evaporation energy consumption. Finally, the single factor analysis indicated that total investment cost, annual operation cost and annual evaporation capacity were the main factors while environmental cost and equipment service life were the secondary factors which affected the specific evaporation cost. The above research provides theoretical and experimental bases for the development of the proposed system in the future.


Asunto(s)
Destilación , Purificación del Agua , Vacio , Destilación/métodos , Temperatura , Calor , Purificación del Agua/métodos
14.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893513

RESUMEN

This work presents methods of obtaining polymeric hollow-fiber membranes produced via the dry-wet phase inversion method that were published in renowned specialized membrane publications in the years 2010-2020. Obtaining hollow-fiber membranes, unlike flat membranes, requires the use of a special installation for their production, the most important component of which is the hollow fiber forming spinneret. This method is most often used in obtaining membranes made of polysulfone, polyethersulfone, polyurethane, cellulose acetate, and its derivatives. Many factors affect the properties of the membranes obtained. By changing the parameters of the spinning process, we change the thickness of the membranes' walls and the diameter of the hollow fibers, which causes changes in the membranes' structure and, as a consequence, changes in their transport/separation parameters. The type of bore fluid affects the porosity of the inner epidermal layer or causes its atrophy. Porogenic compounds such as polyvinylpyrrolidones and polyethylene glycols and other substances that additionally increase the membrane porosity are often added to the polymer solution. Another example is a blend of two- or multi-component membranes and dual-layer membranes that are obtained using a three-nozzle spinneret. In dual-layer membranes, one layer is the membrane scaffolding, and the other is the separation layer. Also, the temperature during the process, the humidity, and the composition of the solution in the coagulating bath have impact on the parameters of the membranes obtained.

15.
Angew Chem Int Ed Engl ; : e202400688, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805343

RESUMEN

Separating helium (He) and hydrogen (H2), two gases that are extremely similar in molecular size and condensation properties, presents a formidable challenge in the helium industry. The development of membranes capable of precisely differentiating between these gases is crucial for achieving large-scale, energy-efficient He/H2 separation. However, the limited selectivity of current membranes has hindered their practical application. In this study, we propose a novel approach to overcome this challenge by engineering submicroporous membranes through the fluorination of partially carbonized hollow fibers. We demonstrate that the fluorine substitution on the inner rim of the micropore walls within the carbon hollow fibers enables tunability of the microporous architecture. Furthermore, it enhances interactions between H2 molecules and the micropore walls through the polarization and hydrogen bonding induced by C-F bonds, resulting in simultaneous improvements in both He/H2 diffusivity and solubility selectivities. The fluorinated HFM-550-F-1 min membrane exhibits exceptional mixed-gas separation performance, with a binary mixed-gas He/H2 selectivity of 10.5 and a ternary mixed-gas He/(H2+CO2) selectivity of 20.8, at 40 bar feed pressure and 35 °C, surpassing all previously reported polymer-based gas separation membranes, and remarkable plasticization resistance and long-term continuous stability over 30 days.

16.
Angew Chem Int Ed Engl ; 63(8): e202317864, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38189768

RESUMEN

Nanoparticles can suppress asymmetric precursor support collapse during pyrolysis to create carbon molecular sieve (CMS) membranes. This advance allows elimination of standard sol-gel support stabilization steps. Here we report a simple but surprisingly important thermal soaking step at 400 °C in the pyrolysis process to obtain high performance CMS membranes. The composite CMS membranes show CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 134.2 and CO2 permeance of 71 GPU at 35 °C. Furthermore, a H2 /CH4 selectivity of 663 with H2 permeance of 240 GPU was achieved for promising green energy resource-H2 separation processes.

17.
Angew Chem Int Ed Engl ; : e202406830, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787808

RESUMEN

Covalent organic frameworks (COFs), known for their chemical stability and porous crystalline structure, hold promises as advanced separation membranes. However, fabricating high-quality COF membranes, particularly on industrial-preferred hollow fiber substrates, remains challenging. This study introduces a novel vapor/vapor-solid (V/V-S) method for growing ultrathin crystalline TpPa-1 COF membranes on the inner lumen surface of alumina hollow fibers (TpPa-1/Alumina). Through vapor-phase monomer introduction onto polydopamine-modified alumina at 170 °C and 1 atm, efficient polymerization and crystallization occur at the confined V-S interface. This enables one-step growth within 8 h, producing 100 nm thick COF membranes with strong substrate adhesion. TpPa-1/Alumina exhibits exceptional stability and performance over 80 h in continuous cross-flow organic solvent nanofiltration (OSN), with methanol permeance of about 200 L m-2 h-1 bar-1 and dye rejection with molecular weight cutoff (MWCO) of approximately 700 Da. Moreover, the versatile V/V-S method synthesizes two additional COF membranes (TpPa2Cl/Alumina and TpHz/Alumina) with different pore sizes and chemical environments. Adjusting the COF membrane thickness between 100-500 nm is achievable easily by varying the growth cycle numbers. Notably, TpPa2Cl/Alumina demonstrates excellent OSN performance in separating the model active pharmaceutical ingredient glycyrrhizic acid (GA) from dimethyl sulfoxide (DMSO), highlighting the method's potential for large-scale industrial applications.

18.
Antimicrob Agents Chemother ; 67(4): e0140122, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36877034

RESUMEN

Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.


Asunto(s)
Antituberculosos , Método de Montecarlo , Farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Modelos Animales
19.
Antimicrob Agents Chemother ; 67(3): e0090822, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36757190

RESUMEN

Tebipenem is an orally bioavailable carbapenem in development for the treatment of patients with complicated urinary tract infections. Herein, we describe the results of studies designed to evaluate tebipenem's potential as an oral (p.o.) transition therapy from intravenous (i.v.) ertapenem therapy for the most common uropathogen, Escherichia coli. These studies utilized a 7-day hollow-fiber in vitro infection model and 5 extended-spectrum ß-lactamase-producing E. coli challenge isolates. Human free-drug serum concentration-time profiles for tebipenem 600 mg p.o. every 8 h and ertapenem 1 g i.v. every 24 h were simulated in the hollow-fiber in vitro infection model. Samples were collected for bacterial density and drug concentration determination over the 7-day study period. Generally, ertapenem monotherapy resulted in a greater reduction in bacterial density than did tebipenem monotherapy. In the treatment arms in which ertapenem dosing was stopped following dosing for 1 or 3 days, immediate bacterial regrowth occurred and matched that of the growth control. Finally, in the treatment arms in which ertapenem dosing was stopped following dosing for 1 or 3 days and tebipenem dosing was initiated for the remainder of the 7-day study, the intravenous-to-oral transition regimen reduced bacterial burdens and prevented regrowth. Given that transition from intravenous to oral antibiotic therapy has been shown to reduce hospital length of stay, nosocomial infection risk, and cost, and improve patient satisfaction, these data demonstrate tebipenem's potential role as an oral transition agent from intravenous antibiotic regimens within the antibiotic stewardship paradigm.


Asunto(s)
Escherichia coli , beta-Lactamas , Humanos , Ertapenem , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas
20.
Environ Sci Technol ; 57(11): 4543-4555, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36877961

RESUMEN

The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Filtración/métodos , Carbón Orgánico , Aguas del Alcantarillado , Biodegradación Ambiental , Biopelículas , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda