Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115041

RESUMEN

The accumulation of ß-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and ß-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.

2.
Neurobiol Dis ; 86: 131-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26626081

RESUMEN

Huntington's disease (HD) is an autosomal dominant disease that develops in midlife (~ 40 years-old at onset) and then progresses slowly. It is still unclear how striatal medium spiny neurons (MSNs), the most vulnerable neurons in HD, maintain their function for decades despite the chronic expression of mutant huntingtin (mHTT). In this study, we used aged BACHD mice, a HD model expressing the full-length human mHTT gene, to investigate the molecular, morphological and functional properties of striatal MSNs. We report that the density of dendritic spines in MSNs is substantially lower in aged BACHD mice than in wild-type (WT) mice, in the absence of major dendritic changes and neuronal loss. This spine loss is accompanied by changes in transcription, resulting in a low expression of the striatum-specific G protein-coupled receptor 88 (Gpr88) as well as a reorganization of the composition of AMPAR subunits (high Gria1/Gria2 mRNA ratio). We also detected functional changes in BACHD MSNs. Notably, BACHD MSNs were hyperexcitable and the amplitude of AMPAR-mediated synaptic currents was higher than in WT MSNs. Altogether, these data show that both the intrinsic properties and the strength of the remaining synapses are modified in MSNs with low dendritic spine density in aged BACHD mice. These homeostatic mechanisms may compensate for the substantial loss of synaptic inputs and thus alleviate the deleterious effects of mHTT expression on the activity of MSNs and also possibly on the motor phenotype in aged BACHD.


Asunto(s)
Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Neuronas/patología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Cuerpo Estriado/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Potenciales Postsinápticos Excitadores , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores AMPA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo
3.
Neurobiol Stress ; 22: 100512, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36632309

RESUMEN

Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep.

4.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36316118

RESUMEN

Neurons express overlapping homeostatic mechanisms to regulate synaptic function and network properties in response to perturbations of neuronal activity. Endocannabinoids (eCBs) are bioactive lipids synthesized in the postsynaptic compartments to regulate synaptic transmission, plasticity, and neuronal excitability primarily through retrograde activation of presynaptic cannabinoid receptor type 1 (CB1). The eCB system is well situated to regulate neuronal network properties and coordinate presynaptic and postsynaptic activity. However, the role of the eCB system in homeostatic adaptations to neuronal hyperactivity is unknown. To address this issue, we used Western blotting and targeted lipidomics to measure adaptations in eCB system to bicuculline (BCC)-induced chronic hyperexcitation in mature cultured rat cortical neurons, and used multielectrode array (MEA) recording and live-cell imaging of glutamate dynamics to test the effects of pharmacological manipulations of eCB on network activities. We show that BCC-induced chronic hyperexcitation triggers homeostatic downscaling and a coordinated adaptation to enhance tonic eCB signaling. Hyperexcitation triggers first the downregulation of fatty acid amide hydrolase (FAAH), the lipase that degrades the eCB anandamide, then an accumulation of anandamide and related metabolites, and finally a delayed upregulation of surface and total CB1. Additionally, we show that BCC-induced downregulation of surface AMPA-type glutamate receptors (AMPARs) and upregulation of CB1 occur through independent mechanisms. Finally, we show that endocannabinoids support baseline network activities before and after downscaling and is engaged to suppress network activity during adaptation to hyperexcitation. We discuss the implications of our findings in the context of downscaling and homeostatic regulation of in vitro oscillatory network activities.


Asunto(s)
Ácidos Araquidónicos , Endocannabinoides , Animales , Ratas , Endocannabinoides/metabolismo , Receptores de Cannabinoides , Ácidos Araquidónicos/farmacología , Alcamidas Poliinsaturadas , Ácido Glutámico , Receptor Cannabinoide CB1 , Moduladores de Receptores de Cannabinoides/farmacología
5.
Cell Rep ; 36(8): 109583, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433048

RESUMEN

Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis.


Asunto(s)
Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Cromatografía Liquida/métodos , Potenciales Postsinápticos Excitadores/fisiología , Fosforilación , Receptores AMPA/metabolismo
6.
Front Neurosci ; 15: 709053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489628

RESUMEN

One of the main goals of neuromorphic computing is the implementation and design of systems capable of dynamic evolution with respect to their own experience. In biology, synaptic scaling is the homeostatic mechanism which controls the frequency of neural spikes within stable boundaries for improved learning activity. To introduce such control mechanism in a hardware spiking neural network (SNN), we present here a novel artificial neuron based on phase change memory (PCM) devices capable of internal regulation via homeostatic and plastic phenomena. We experimentally show that this mechanism increases the robustness of the system thus optimizing the multi-pattern learning under spike-timing-dependent plasticity (STDP). It also improves the continual learning capability of hybrid supervised-unsupervised convolutional neural networks (CNNs), in terms of both resilience and accuracy. Furthermore, the use of neurons capable of self-regulating their fire responsivity as a function of the PCM internal state enables the design of dynamic networks. In this scenario, we propose to use the PCM-based neurons to design bio-inspired recurrent networks for autonomous decision making in navigation tasks. The agent relies on neuronal spike-frequency adaptation (SFA) to explore the environment via penalties and rewards. Finally, we show that the conductance drift of the PCM devices, contrarily to the applications in neural network accelerators, can improve the overall energy efficiency of neuromorphic computing by implementing bio-plausible active forgetting.

7.
Yakugaku Zasshi ; 139(6): 923-929, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31155537

RESUMEN

Brain function is controlled by the balance between the excitatory and inhibitory systems. If this balance is disrupted and the excitatory system dominates, convulsions or epileptic seizures are induced. Neuronal hyperexcitability in the brain leads to marked changes in the function of the neurons, which adversely affect the stability of the neural network. Many of the currently used antiepileptic drugs are symptomatic treatments that suppress the electrical hyperexcitability of the cerebrum. Although patients with epilepsy should continuously take antiepileptic drugs to control their seizures, approximately 20% of patients are drug resistant. The brain has the ability to control neuronal functions within acceptable limits while it maintains the amount of synaptic inputs that form the basis of information accumulation. Neuronal self-regulation is known as homeostatic scaling by which the intensity of all excitatory synapses is suppressed when neuronal excitability is increased. However, the molecular mechanisms of homeostatic scaling and their pathophysiological significance in vivo remain unclear. Repeated treatment with a subconvulsive dosage of pentylenetetrazol (PTZ), a γ-aminobutyric acid (GABA)A receptor antagonist, is known to induce kindling in mice, which is a common animal model used to study epilepsy. We found that PTZ-induced kindling was potentiated in mice deficient in the transcription factor neuronal PAS domain protein 4 (Npas4), the expression of which is immediately induced in response to neuronal activity. At this symposium, we will discuss the possibility of Npas4 as a novel target molecule for epilepsy treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Encéfalo/fisiología , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Homeostasis , Terapia Molecular Dirigida , Neuronas/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Modelos Animales de Enfermedad , Epilepsia/genética , Humanos , Excitación Neurológica , Ratones , Sinapsis/fisiología
8.
Neuron ; 100(2): 314-329, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30359599

RESUMEN

Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.


Asunto(s)
Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología , Animales , Humanos , Sinapsis/fisiología
9.
Front Mol Neurosci ; 10: 234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804447

RESUMEN

Angelman syndrome (AS) is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am-/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am-/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am-/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am-/p+ mice, which may underlie the cognitive deficits observed in AS.

10.
Cell Rep ; 18(6): 1512-1526, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28178527

RESUMEN

Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calcium channel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.


Asunto(s)
Neuronas/fisiología , Sinapsis/fisiología , Transcripción Genética/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Homeostasis/fisiología , Ratones , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/fisiología
11.
Neuron ; 92(2): 358-371, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27764671

RESUMEN

Homeostatic scaling adjusts the strength of synaptic connections up or down in response to large changes in input. To identify the landscape of proteomic changes that contribute to opposing forms of homeostatic plasticity, we examined the plasticity-induced changes in the newly synthesized proteome. Cultured rat hippocampal neurons underwent homeostatic up-scaling or down-scaling. We used BONCAT (bio-orthogonal non-canonical amino acid tagging) to metabolically label, capture, and identify newly synthesized proteins, detecting and analyzing 5,940 newly synthesized proteins using mass spectrometry and label-free quantitation. Neither up- nor down-scaling produced changes in the number of different proteins translated. Rather, up- and down-scaling elicited opposing translational regulation of several molecular pathways, producing targeted adjustments in the proteome. We discovered ∼300 differentially regulated proteins involved in neurite outgrowth, axon guidance, filopodia assembly, excitatory synapses, and glutamate receptor complexes. We also identified differentially regulated proteins that are associated with multiple diseases, including schizophrenia, epilepsy, and Parkinson's disease.


Asunto(s)
Hipocampo/metabolismo , Homeostasis , Neuronas/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Anisomicina/farmacología , Orientación del Axón/efectos de los fármacos , Bicuculina/farmacología , Células Cultivadas , Cromatografía Liquida , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Inhibidores de la Síntesis de la Proteína/farmacología , Proteoma/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Sinapsis/efectos de los fármacos , Espectrometría de Masas en Tándem
12.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130141, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298143

RESUMEN

The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.


Asunto(s)
Endocitosis/fisiología , Homeostasis/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Modelos Neurológicos , Densidad Postsináptica/metabolismo , Receptores AMPA/metabolismo , Humanos , Metaplasia , Densidad Postsináptica/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda