Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2306835120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523542

RESUMEN

The electrochemical oxidation process has the unique advantage of in-situ •OH generation for deep mineralization of organic pollutants, which is expected to provide a solution for the globally decentralized wastewater treatment and reuse. However, it is still a great challenge to develop low-cost anodes with ultrahigh •OH yield and low energy consumption. Here, a low-cost and stable mixed metal oxide (MMO) anode (Cu-Sb-SnO2) developed by a simple and scalable preparation process presents extremely high organic pollutants degradation efficiency and low energy consumption. The tetracycline degradation kinetics constant of the Cu-Sb-SnO2 system (0.362 min-1) was 9 to 45 times higher than that of other prepared anodes, which is superior to the existing anodes reported so far. The experimental results and theoretical calculations indicate that the Cu-Sb-SnO2 has moderate oxygen evolution potential, larger water adsorption energy, and lower reaction energy barrier, which is conducive to selective water oxidation to generate •OH. Notably, it is systematically and comprehensively confirmed that the generation of •OH triggered by in situ electrogenerated Cu(III) increased •OH steady-state concentration by over four times. Furthermore, the doped Cu species can play a key role in promoting charge transfer as an "electronic porter" between Sn and Sb in the electrocatalytic process by adjusting the electronic structure of the Sb-SnO2 electrode. This work paves the way for the development of MMO anodes utilizing the advantage of the Cu redox shuttle.

2.
Proc Natl Acad Sci U S A ; 120(39): e2305883120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725637

RESUMEN

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.

3.
Small ; 20(1): e2304491, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653587

RESUMEN

A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.


Asunto(s)
Fibroblastos Asociados al Cáncer , Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Microambiente Tumoral , Cobre/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral
4.
Environ Sci Technol ; 58(1): 795-804, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38095914

RESUMEN

Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.


Asunto(s)
Contaminantes Ambientales , Oryza , Contaminantes del Suelo , Hierro/química , Contaminantes Ambientales/análisis , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Rizosfera , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Suelo/química , Compuestos Ferrosos/análisis , Compuestos Ferrosos/metabolismo , Oxígeno/análisis
5.
Environ Sci Technol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023504

RESUMEN

Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 µm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.

6.
Environ Sci Technol ; 58(8): 3849-3857, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349952

RESUMEN

Reactive oxygen species (ROS) production in O2-perturbed subsurface environments has been increasingly documented in recent years. However, the constraining conditions under which abiotic and/or biotic mechanisms predominate for ROS production remain ambiguous. Here, we demonstrate that the ROS production mechanism, biotic and abiotic, is determined by sediment redox properties and sediment compositions. Upon the oxygenation of 10 field sediments, the cumulative H2O2 concentrations reached up to 554 µmol/kg within 2 h. The autoclaving sterilization experiments showed that H2O2 could be produced by both biotic and abiotic processes depending on the redox conditions. However, only the abiotic process could produce significant levels of •OH, and the production yield was closely related to the sediment components, particularly sediment Fe(II) and organic matter. Fe(II) bound with organic matter led to high yields of H2O2 and •OH production. Sediment oxygenation contributed to the appearance of H2O2 in groundwater, with the abiotic mechanism producing higher instantaneous H2O2 concentrations than the biotic mechanism. These findings reveal that the redox conditions, compositions, and texture of sediments collectively control abiotic and biotic mechanisms for ROS production, which assists the identification of ROS production hotspots and the understanding of ROS distribution and utilization in the subsurface.


Asunto(s)
Compuestos Ferrosos , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Oxidación-Reducción
7.
Environ Sci Technol ; 58(13): 5911-5920, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38437592

RESUMEN

HONO acts as a major OH source, playing a vital role in secondary pollutant formation to deteriorate regional air quality. Strong unknown sources of daytime HONO have been widely reported, which significantly limit our understanding of radical cycling and atmospheric oxidation capacity. Here, we identify a potential daytime HONO and OH source originating from photoexcited phenyl organic nitrates formed during the photoreaction of aromatics and NOx. Significant HONO (1.56-4.52 ppb) and OH production is observed during the photoreaction of different kinds of aromatics with NOx (18.1-242.3 ppb). We propose an additional mechanism involving photoexcited phenyl organic nitrates (RONO2) reacting with water vapor to account for the higher levels of measured HONO and OH than the model prediction. The proposed HONO formation mechanism was evidenced directly by photolysis experiments using typical RONO2 under UV irradiation conditions, during which HONO formation was enhanced by relative humidity. The 0-D box model incorporated in this mechanism accurately reproduced the evolution of HONO and aromatic. The proposed mechanism contributes 5.9-36.6% of HONO formation as the NOx concentration increased in the photoreaction of aromatics and NOx. Our study implies that photoexcited phenyl organic nitrates are an important source of atmospheric HONO and OH that contributes significantly to atmospheric oxidation capacity.


Asunto(s)
Contaminantes Ambientales , Ácido Nitroso , Ácido Nitroso/análisis , Radical Hidroxilo , Oxidación-Reducción , Rayos Ultravioleta , Nitratos
8.
Environ Sci Technol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028924

RESUMEN

Natural attenuation of organic contaminants can occur under anoxic or oxic conditions. However, the effect of the coupling anoxic-oxic process, which often happens in subsurface soil, on contaminant transformation remains poorly understood. Here, we investigated 2,4-dichlorophenol (2,4-DCP) transformation in Fe-rich soil under anoxic-oxic alternation. The anoxic and oxic periods in the alternating system showed faster 2,4-DCP transformation than the corresponding control single anoxic and oxic systems; therefore, a higher transformation rate (63.4%) was obtained in the alternating system relative to control systems (27.9-42.4%). Compared to stable pH in the alternating system, the control systems presented clear OH- accumulation, caused by more Fe(II) regeneration in the control anoxic system and longer oxygenation in the control oxic system. Since 2,4-DCP was transformed by ion exchangeable Fe(II) in soil via direct reduction in the anoxic process and induced ·OH oxidation in the oxic process, OH- accumulation was unbeneficial because it competed for proton with direct reduction and inhibited •OH generation via complexing with Fe(II). However, the alternating system exhibited OH--buffering capacity via anoxic-oxic coupling processes because the subsequent oxic periods intercepted Fe(II) regeneration in anoxic periods, while shorter exposure to O2 in oxic periods avoided excessive OH- generation. These findings highlight the significant role of anoxic-oxic alternation in contaminant attenuation persistently.

9.
Environ Res ; 243: 117745, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008205

RESUMEN

Anaerobic digestion is an environmentally friendly method for reclaiming waste activated sludge. However, it cannot be overlooked that the solid residue generated from this process can still pose environmental risks and impose economic pressure on society. To mitigate and recycle the solid residue, this study utilized it as a primary raw material for manufacturing ceramsite with potential applications in wastewater treatment. The optimal ratio of solid residue to fly ash was demonstrated to be 6:4 with an additional 15% of clay supplementing the raw ceramsite materials. Furthermore, the optimal sintering process was established as preheating at 300 °C for 25 min followed by sintering at 1085 °C for 10 min, as determined through an L16 (44) Orthogonal test. The prepared ceramsite demonstrated advantageous performance parameters that exceeded the standards outlined in the Chinese industry standard CJ/T 299-2008 for water treatment artificial ceramsite. When utilized in an ozonation system, the ceramsite exhibited remarkable catalytic activity for phenol degradation by promoting the decomposition of molecular O3 into hydroxyl radicals. Additionally, it displayed minimal leaching of heavy metals and lower application costs. These findings emphasize its attractiveness in water and wastewater treatment processes and present a practical strategy for reclaiming this solid residue.


Asunto(s)
Mezclas Complejas , Metales Pesados , Ozono , Aguas del Alcantarillado , Anaerobiosis , Metales Pesados/análisis , Ceniza del Carbón , Residuos Sólidos
10.
Environ Res ; 252(Pt 3): 118870, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579994

RESUMEN

In persulfate-based advanced oxidation processes (PS-AOPs), sulfate radicals (SO4•-) have been recognized to play more important roles in inducing bromate (BrO3-) formation rather than hydroxyl radicals (HO•) because of the stronger oxidation capacity of the former. However, this study reported an opposite result that HO• indeed dominated the formation of bromate instead of SO4•-. Quenching experiments were coupled with electron paramagnetic resonance (EPR) detection and chemical probe identification to elucidate the contributions of each radical species. The comparison of different thermal activated persulfates (PDS and PMS) demonstrated that the significant higher bromate formation in HEAT/PMS ([BrO3-]/[Br-]0 = 0.8), as compared to HEAT/PDS ([BrO3-]/[Br-]0 = 0.2), was attributable to the higher concentration of HO• radicals in HEAT/PMS. Similarly, the bromate formation in UV/PDS ([BrO3-]/[Br-]0 = 1.0), with a high concentration of HO•, further underscored the dominant role of HO•. As a result, we quantified that HO• and SO4•- radicals accounted 66.7% and 33.3% for bromate formation. This controversial result can be reconciled by considering the critical intermediate, hypobromic acid/hypobromate (HOBr/BrO-), involved in the transformation of Br- to BrO3-. HO• radicals have the chemical preference to induce the formation of HOBr/BrO- intermediates (contributing âˆ¼ 60%) relative to SO4•- radicals (contributing âˆ¼ 40%). This study highlighted the dominant role of HO• in the formation of bromate rather than SO4•- in PS-AOPs and potentially offered novel insights for reducing disinfection byproduct formation by controlling the radical species in AOPs.


Asunto(s)
Bromatos , Radical Hidroxilo , Oxidación-Reducción , Sulfatos , Bromatos/química , Radical Hidroxilo/química , Sulfatos/química , Espectroscopía de Resonancia por Spin del Electrón
11.
Environ Monit Assess ; 196(7): 674, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942963

RESUMEN

Solar Fenton is an important and extensively used advanced oxidation process (AOP) to degrade pharmaceutical pollutants. The objective of this study was to evaluate the performance of simultaneous degradation of the mixed pollutants (amoxicillin, acetaminophen, and ciprofloxacin) for an aqueous solution using the solar Fenton process. Operating parameters such as pH, iron doses, H2O2 doses, pollutant concentrations, and time were studied. From the experimental results, the ideal conditions were obtained for the removal of mixed pollutants such as pH 3, Fe2+ 0.04 mM, H2O2 4 mM, the concentration of the mixed pollutants 5 mg/L, solar radiation 400 W/m2, and time 10 min, respectively. The pseudo-first-order kinetics were utilized to investigate the degradation efficacy of the mixed pollutants. The result of the study indicates that the degradation efficiency was > 99% for the mixed pollutants. A maximum of 63% mineralization was observed, and hydroxyl radical scavenger effects were studied. The best optimal conditions were applied to assess the spiked wastewater (municipal wastewater (MWW) and hospital wastewater (HWW)). The highest elimination rates for AMX, ACET, and CIP were observed as 65%, 89%, and 85% for MWW and 76%, 92%, and 80% for HWW, respectively. The degraded by-products were detected by LC-ESI-MS in the water matrix (aqueous solution and spiked wastewater), and ECOSAR analysis was performed for the transformed products. The study concluded that the solar Fenton technique is promising and effective for the removal of mixed pollutants from the water matrix.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Luz Solar , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Cinética , Hierro/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Oxidación-Reducción , Ciprofloxacina/química , Ciprofloxacina/análisis , Acetaminofén/química , Acetaminofén/análisis , Amoxicilina/química , Amoxicilina/análisis
12.
Chemistry ; 29(50): e202301260, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334753

RESUMEN

Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.


Asunto(s)
Nanopartículas del Metal , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones , Humanos , Oro/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno
13.
Environ Sci Technol ; 57(48): 19827-19837, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37948669

RESUMEN

Mackinawite (FeS) has gained increasing interest due to its potential application in contaminant removal by either reduction or oxidation processes. This study further demonstrated the efficiency of FeS in degrading nitrobenzene (ArNO2) via a sequential two-step reduction and oxidation process under neutral conditions. In the reduction stage, FeS rapidly reduced ArNO2 to aniline (ArNH2), with nitrosobenzene (ArNO) and phenylhydroxylamine (ArNHOH) serving as the intermediates. X-ray photoelectron spectroscopy (XPS) analysis indicated that both Fe(II) and S(II) in FeS contributed electrons to the reduction of ArNO2. In the subsequent oxidation stage with oxygen, by addition of 0.5 mM tripolyphosphate (TPP), ArNH2 generated in the reduction process could be effectively oxidized to aminophenols by hydroxyl radicals (•OH), which would undergo eventual mineralization via ring-cleavage reactions. TPP exerted a favorable role in enhancing •OH production for ArNH2 degradation by promoting the formation of the dissolved Fe(II)-TPP complex, thus enhancing the homogeneous Fenton reaction. Additionally, TPP adsorption inhibited the surface oxidation reactivity of FeS due to the change of Fe(II) coordination. Finally, the effective degradation of ArNO2 by FeS in actual groundwater was demonstrated by using this sequential reduction and oxidation approach. These research findings provide a theoretical basis for a new FeS-based remediation approach, offering an alternative way for comprehensive removal of ArNO2.


Asunto(s)
Compuestos Ferrosos , Radical Hidroxilo , Compuestos Ferrosos/química , Oxidación-Reducción , Nitrobencenos
14.
Environ Sci Technol ; 57(47): 18636-18646, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36648439

RESUMEN

Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Aguas Residuales , Compuestos Férricos , Catálisis , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Technol ; 57(48): 20238-20248, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976412

RESUMEN

The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.


Asunto(s)
Carbón Orgánico , Suelo , Radicales Libres/química , Carbón Orgánico/química , Bacterias
16.
Environ Sci Technol ; 57(43): 16340-16347, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37856081

RESUMEN

Frequent cycles of flooding and drainage in paddy soils lead to the reductive dissolution of iron (Fe) minerals and the reoxidation of Fe(II) species, all while generating a robust and consistent output of reactive oxygen species (ROS). In this study, we present a comprehensive assessment of the temporal and spatial variations in Fe species and ROS during the flooding-drainage process in a representative paddy soil. Our laboratory column experiments showed that a decrease in dissolved O2 concentration led to rapid Fe reduction below the water-soil interface, and aqueous Fe(II) was transformed into solid Fe(II) phases over an extended flooding time. As a result, the •OH production capacity of liquid phases was reduced while that of solid phases improved. The •OH production capacity of solid phases increased from 227-271 µmol kg-1 (within 1-11 cm depth) to 500-577 to 499-902 µmol kg-1 after 50 day, 3 month, and 1 year incubation, respectively. During drainage, dynamic •OH production was triggered by O2 consumption and Fe(II) oxidation. ROS-trapping film and in situ capture revealed that the soil surface was the active zone for intense H2O2 and •OH production, while limited ROS production was observed in the deeper soil layers (>5 cm) due to the limited oxygen penetration. These findings provide more insights into the complex interplay between dynamic Fe cycling and ROS production in the redox transition zones of paddy fields.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Radical Hidroxilo , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Oxidación-Reducción , Agua , Compuestos Ferrosos
17.
Environ Sci Technol ; 57(9): 3703-3712, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36820615

RESUMEN

Face paints used by opera performers have been shown to contain high levels of heavy metals. However, whether frequent exposure, via dermal contact and inadvertent oral ingestion, results in occupational diseases is unknown, as is the potential exacerbation of toxicity by high-intensity irradiation from stage lights. In this study, we examined the release of Cr, Cu, Pb, and Zn from 40 face paints and the consequent health risks posed by different practical scenarios involving their use. The results showed that the in vitro bioaccessibility (IVBA) of Cr, Cu, Pb, and Zn in the tested products was, on average, 7.0, 5.5, 19.9, and 7.9% through oral ingestion and 1.1, 2.2, 1.6, and 1.2% through dermal contact, respectively. Stage light irradiation significantly increased the IVBA associated with dermal contact, to the average of 4.8, 34.9, 5.7, and 1.9% for Cr, Cu, Pb, and Zn, respectively. The increase was mainly due to the light-induced generation of reactive oxygen species, particularly hydroxyl free radicals. The vitality and transcriptional response of 3D skin models as well as a quantitative risk assessment of skin sensitization indicated that dermal contact with face paints may induce predictable skin damage and potentially other skin diseases. Long-term exposure to face paints on stage may also pose a non-carcinogenic health risk. The demonstrated health risks to opera performers of face paint exposure should lead to strict regulations regarding the content of theatrical face paints.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Especies Reactivas de Oxígeno , Monitoreo del Ambiente , Plomo , Pintura , Medición de Riesgo/métodos , China
18.
Environ Sci Technol ; 57(17): 6965-6974, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083304

RESUMEN

Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA). But its kinetics was often found to be slow in previous laboratory studies where high hydroxyl radical concentrations ([•OH]) were used. In this study, we performed heterogeneous oxidation experiments of several model OA systems under varied aging timescales and gas-phase [•OH]. Our results suggest that OA heterogeneous oxidation may be 2-3 orders of magnitude faster when [•OH] is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding and prediction of atmospheric OA aging and composition evolution.


Asunto(s)
Atmósfera , Atmósfera/análisis , Atmósfera/química , Aerosoles/análisis , Oxidación-Reducción
19.
Environ Sci Technol ; 57(48): 20315-20325, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37978928

RESUMEN

It is difficult to achieve deep dehalogenation or mineralization for halogenated antibiotics using traditional reduction or oxidation processes, posing the risk of microbial activity inhibition and bacterial resistance. Herein, an efficient electrocatalytic process coupling atomic hydrogen (H*) reduction with hydroxyl radical (•OH) oxidation on a bifunctional cathode catalyst is developed for the deep dehalogenation and mineralization of florfenicol (FLO). Atomically dispersed NiFe bimetallic catalyst on nitrogen-doped carbon as a bifunctional cathode catalyst can simultaneously generate H* and •OH through H2O/H+ reduction and O2 reduction, respectively. The H* performs nucleophilic hydro-dehalogenation, and the •OH performs electrophilic oxidization of the carbon skeleton. The experimental results and theoretical calculations indicate that reductive dehalogenation and oxidative mineralization processes can promote each other mutually, showing an effect of 1 + 1 > 2. 100% removal, 100% dechlorination, 70.8% defluorination, and 65.1% total organic carbon removal for FLO are achieved within 20 min (C0 = 20 mg·L-1, -0.5 V vs SCE, pH 7). The relative abundance of the FLO resistance gene can be significantly reduced in the subsequent biodegradation system. This study demonstrates that the synergy of reduction dehalogenation and oxidation degradation can achieve the deep removal of refractory halogenated organic contaminants.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Hidrógeno , Oxidación-Reducción , Carbono , Electrodos , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis
20.
Environ Sci Technol ; 57(36): 13546-13558, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624361

RESUMEN

The oxidative potential (OP) of particulate matter has been widely suggested as a key metric for describing atmospheric particle toxicity. Secondary organic aerosol (SOA) and redox-active transition metals, such as iron and copper, are key drivers of particle OP. However, their relative contributions to OP, as well as the influence of metal-organic interactions and particulate chemistry on OP, remains uncertain. In this work, we simultaneously deploy two novel online instruments for the first time, providing robust quantification of particle OP. We utilize online AA (OPAA) and 2,7-dichlorofluoroscein (ROSDCFH) methods to investigate the influence of Fe(II) and Cu(II) on the OP of secondary organic aerosol (SOA). In addition, we quantify the OH production (OPOH) from these particle mixtures. We observe a range of synergistic and antagonistic interactions when Fe(II) and Cu(II) are mixed with representative biogenic (ß-pinene) and anthropogenic (naphthalene) SOA. A newly developed kinetic model revealed key reactions among SOA components, transition metals, and ascorbate, influencing OPAA. Model predictions agree well with OPAA measurements, highlighting metal-ascorbate and -naphthoquinone-ascorbate reactions as important drivers of OPAA. The simultaneous application of multiple OP assays and a kinetic model provides new insights into the influence of metal and SOA interactions on particle OP.


Asunto(s)
Cobre , Hierro , Aerosoles , Oxidación-Reducción , Ácido Ascórbico , Estrés Oxidativo , Compuestos Ferrosos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda