Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 62(4): e202213700, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36399425

RESUMEN

The hydration structure of nitroxide radicals in aqueous solutions is elucidated by advanced 17 O hyperfine (hf) spectroscopy with support of quantum chemical calculations and MD simulations. A piperidine and a pyrrolidine-based nitroxide radical are compared and show clear differences in the preferred directionality of H-bond formation. We demonstrate that these scenarios are best represented in 17 O hf spectra, where in-plane coordination over σ ${\sigma }$ -type H-bonding leads to little spin density transfer on the water oxygen and small hf couplings, whereas π ${{\rm \pi }}$ -type perpendicular coordination generates much larger hf couplings. Quantitative analysis of the spectra based on MD simulations and DFT predicted hf parameters is consistent with a distribution of close solvating water molecules, in which directionality is influenced by subtle steric effects of the ring and the methyl group substituents.


Asunto(s)
Óxidos de Nitrógeno , Agua , Espectroscopía de Resonancia por Spin del Electrón , Óxidos de Nitrógeno/química , Soluciones , Radicales Libres
2.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29459412

RESUMEN

The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

3.
Adv Sci (Weinh) ; 11(16): e2306710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419268

RESUMEN

A copper-dependent self-cleaving DNA (DNAzyme or deoyxyribozyme) previously isolated by in vitro selection has been analyzed by a combination of Molecular Dynamics (MD) simulations and advanced Electron Paramagnetic Resonance (Electron Spin Resonance) EPR/ESR spectroscopy, providing insights on the structural and mechanistic features of the cleavage reaction. The modeled 46-nucleotide deoxyribozyme in MD simulations forms duplex and triplex sub-structures that flank a highly conserved catalytic core. The DNA self-cleaving construct can also form a bimolecular complex that has a distinct substrate and enzyme domains. The highly dynamic structure combined with an oxidative site-specific cleavage of the substrate are two key-aspects to elucidate. By combining EPR/ESR spectroscopy with selectively isotopically labeled nucleotides it has been possible to overcome the major drawback related to the "metal-soup" scenario, also known as "super-stoichiometric" ratios of cofactors versus substrate, conventionally required for the DNA cleavage reaction within those nucleic acids-based enzymes. The focus on the endogenous paramagnetic center (Cu2+) here described paves the way for analysis on mixtures where several different cofactors are involved. Furthermore, the insertion of cleavage reaction within more complex architectures is now a realistic perspective towards the applicability of EPR/ESR spectroscopic studies.


Asunto(s)
Cobre , ADN , Simulación de Dinámica Molecular , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , ADN/química , Conformación de Ácido Nucleico , División del ADN , ADN Catalítico/química , ADN Catalítico/metabolismo , Iones/química
4.
J Magn Reson ; 303: 105-114, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31039520

RESUMEN

The tetracycline-binding RNA aptamer (TC-aptamer) binds its cognate ligand the antibiotic tetracycline (TC) via a Mg2+ or Mn2+ ion with high affinity at high divalent metal ion concentrations (KD=800pM, ⩾10 mM). These concentrations lie above the physiological divalent metal ion concentration of ca. 1 mM and it is known from literature, that the binding affinity decreases upon decreasing the divalent metal ion concentration. This work uses a Mn2+ concentration of 1 mM and 1D-hyperfine experiments reveal two pronounced 31P couplings from the RNA besides the 13C signal of 13C-labeled TC. From these 1D-hyperfine data alone, however, no conclusions can be drawn on the binding of TC. Either TC may bind via Mn2+ to the aptamer or TC may form a free Mn-TC complex and some Mn2+ also binds to the aptamer. In this work, we show using 2D-correlated hyperfine spectroscopy at Q-band frequencies (34 GHz), that the 13C and 31P signals can be correlated; thus arising from a single species. We use THYCOS (triple hyperfine correlation spectroscopy) and 2D ELDOR-detected NMR (2D electron electron double resonance detected NMR) for this purpose showing that they are suitable techniques to correlate two different nuclear spin species (13C and 31P) on two different molecules (RNA and TC) to the same electron spin (Mn2+). Out of the two observed 31P-hyperfine couplings, only one shows a clear correlation to 13C. Although THYCOS and 2D EDNMR yield identical results, 2D EDNMR is far more sensitive. THYCOS spectra needed a time factor of ×20 in comparison to 2D EDNMR to achieve a comparable signal-to-noise.


Asunto(s)
Manganeso/química , Resonancia Magnética Nuclear Biomolecular/métodos , Tetraciclina/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , ARN/química , Relación Señal-Ruido
5.
J Magn Reson ; 303: 17-27, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30991287

RESUMEN

We present and discuss the performance of 1H electron-nuclear double resonance (ENDOR) at 263 GHz/9.4 T by employing a prototype, commercial quasi optical spectrometer. Basic instrumental features of the setup are described alongside a comprehensive characterization of the new ENDOR probe head design. The performance of three different ENDOR pulse sequences (Davies, Mims and CP-ENDOR) is evaluated using the 1H BDPA radical. A key feature of 263 GHz spectroscopy - the increase in orientation selectivity in comparison with 94 GHz experiments - is discussed in detail. For this purpose, the resolution of 1H ENDOR spectra at 263 GHz is verified using a representative protein sample containing approximately 15 picomoles of a tyrosyl radical. Davies ENDOR spectra recorded at 5 K reveal previously obscured spectral features, which are interpreted by spectral simulations aided by DFT calculations. Our analysis shows that seven internal proton couplings are detectable for this specific radical if sufficient orientation selectivity is achieved. The results prove the fidelity of 263 GHz experiments in reporting orientation-selected 1H ENDOR spectra and demonstrate that new significant information can be uncovered in complex molecular systems, owing to the enhanced resolution combined with high absolute sensitivity and no compromise in acquisition time.

6.
J Magn Reson ; 289: 26-34, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29448131

RESUMEN

A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

7.
J Magn Reson ; 240: 77-89, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24530956

RESUMEN

ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to off resonance effects and/or nuclear relaxation effects. These results suggest that the 2D-EDNMR experiment can be also useful for relaxation pathway studies. Finally we present preliminary results demonstrating that 2D-EDNMR can resolve overlapping (33)S and (14)N signals of type 1 Cu(II) center in (33)S enriched Azurin.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda