Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37889849

RESUMEN

A novel halophilic bacterium, strain 71-iT, was isolated from Inche-Broun hypersaline lake in Golestan province, in the north of Iran. It was a Gram-stain-negative, non-endospore forming, rod-shaped bacterium. It grew at 4-40 °C (optimum 30 °C), pH 6.0-11.0 (optimum pH 7.5) and with 0.5-15 % (w/v) NaCl [optimum 3 % (w/v) NaCl]. The results of phylogenetic analyses based on the 16S rRNA gene sequence comparison indicated its affiliation to the genus Marinobacter and the low percentage of identity with the most closely related species (97.5 %), indicated its placement as a novel species within this genus. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) analyses of this strain against closely related species confirmed its condition of novel taxon. On the other hand, the percentage of the average amino acid identity (AAI) affiliated strain 71-iT within the genus Marinobacter. The DNA G+C content of this isolate was 57.7 mol%. The major fatty acids were C16 : 0 and C16 : 1ω7c and/or C16 : 1 ω6c. Ubiquinone-9 was the major isoprenoid quinone and diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were the main polar lipids of this strain. On the basis of the phylogenomic and phenotypic (including chemotaxonomic) features, we propose strain 71-iT (= IBRC M 11023T = CECT 30160T = LMG 29252T) as the type strain of a novel species within the genus Marinobacter, with the name Marinobacter iranensis sp. nov. Genomic detections of this strain in various metagenomic databases indicate that it is a relatively abundant species in environments with low salinities (approximately 5 % salinity), but not in hypersaline habitats with high salt concentrations.


Asunto(s)
Ácidos Grasos , Marinobacter , Ácidos Grasos/química , Lagos/microbiología , Cloruro de Sodio , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
2.
Appl Environ Microbiol ; 88(10): e0013222, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35499328

RESUMEN

Nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms contribute to nitrogen, carbon, and iron cycling in freshwater and marine ecosystems. However, NRFeOx microorganisms have not been investigated in hypersaline lakes, and their identity, as well as their activity in response to salinity, is unknown. In this study, we combined cultivation-based most probable number (MPN) counts with Illumina MiSeq sequencing to analyze the abundance and community compositions of NRFeOx microorganisms enriched from five lake sediments with different salinities (ranging from 0.67 g/L to 346 g/L). MPN results showed that the abundance of NRFeOx microorganisms significantly (P < 0.05) decreased with increasing lake salinity, from 7.55 × 103 to 8.09 cells/g dry sediment. The community composition of the NRFeOx enrichment cultures obtained from the MPNs differed distinctly among the five lakes and clustered with lake salinity. Two stable enrichment cultures, named FeN-EHL and FeN-CKL, were obtained from microcosm incubations of sediment from freshwater Lake Erhai and hypersaline Lake Chaka. The culture FeN-EHL was dominated by genus Gallionella (68.4%), while the culture FeN-CKL was dominated by genus Marinobacter (71.2%), with the former growing autotrophically and the latter requiring an additional organic substrate (acetate) and Fe(II) oxidation, caused to a large extent by chemodenitrification [reaction of nitrite with Fe(II)]. Short-range ordered Fe(III) (oxyhydr)oxides were the product of Fe(II) oxidation, and the cells were partially attached to or encrusted by the formed iron minerals in both cultures. In summary, different types of interactions between Fe(II) and nitrate-reducing bacteria may exist in freshwater and hypersaline lakes, i.e., autotrophic NRFeOx and chemodenitrification in freshwater and hypersaline environments, respectively. IMPORTANCE NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Here, we demonstrated that salinity may affect the abundance, identity, and nutrition modes of NRFeOx microorganisms. Autotrophy was only detectable in a freshwater lake but not in the saline lake investigated. We enriched a mixotrophic culture capable of nitrate-reducing Fe(II) oxidation from hypersaline lake sediments. However, Fe(II) oxidation was probably caused by abiotic nitrite reduction (chemodenitrification) rather than by a biologically mediated process. Consequently, our study suggests that in hypersaline environments, Fe(II) oxidation is largely caused by chemodentrification initiated by nitrite formation by chemoheterotrophic bacteria, and additional experiments are needed to demonstrate whether or to what extent Fe(II) is enzymatically oxidized.


Asunto(s)
Nitratos , Nitritos , Bacterias , Ecosistema , Compuestos Férricos , Compuestos Ferrosos , Sedimentos Geológicos/microbiología , Hierro , Lagos , Óxidos de Nitrógeno , Oxidación-Reducción , Salinidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-35076362

RESUMEN

Two Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and non-motile strains (LM13ST and JZCK2T) were isolated from hypersaline lakes in China. The colonies of both strains were yellow-pigmented and convex. Both strains could grow at 4-34 °C, pH 6.5-9.0 and with 1.0-13.0 % (w/v) NaCl. Comparisons based on 16S rRNA gene sequences showed that strains LM13ST and JZCK2T share less than 98.3 % similarity with species of the genus Salegentibacter. The phylogenetic tree reconstructed based on 16S rRNA gene sequences also showed that Salegentibacter species are the most closely related neighbours of strains LM13ST and JZCK2T. The sequenced draft genome sizes of strains LM13ST and JZCK2T are 4.06 and 4.22 Mbp with G+C contents of 37.0 and 37.8 mol%, respectively. The phylogenomic tree reconstructed using the Up-to-date Bacterial Core Gene set pipeline also demonstrated that both strains belong to the genus Salegentibacter. The calculated pairwise average nucleotide identity values and digital DNA-DNA hybridization values between strains LM13ST and JZCK2T and Salegentibacter species were less than 86.4 and 32.0 %, respectively. The respiratory quinone in both strains was MK-6. Their major fatty acids were iso-C12 : 0, iso-C14 : 0, C15 : 1 ω10c, iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C17 : 1 ω10c. Their major polar lipids included phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid, but strain LM13ST also contained one more unidentified aminolipid, one more unidentified lipid and one unidentified phospholipid. Combining the above descriptions, strains LM13ST and JZCK2T should represent two independent novel species of the genus Salegentibacter, for which the names Salegentibacter lacus sp. nov. (type strain LM13ST=GDMCC 1.2643T=KCTC 82861T) and Salegentibacter tibetensis sp. nov. (type strain JZCK2T=GDMCC 1.2621T=KCTC 82862T) are proposed.


Asunto(s)
Ácidos Grasos , Flavobacteriaceae/clasificación , Lagos , Filogenia , Aguas Salinas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Lagos/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tibet
4.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34787539

RESUMEN

Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora. Major fatty acids were C17 : 1ω8c, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella, which were re-classified as members of the genus Micromonospora, forming a clade distinct from the genus Salinispora. Pairwise whole genome average nucleotide identity (ANI) values, digital DNA-DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.


Asunto(s)
Lagos/microbiología , Micromonospora , Filogenia , Aguas Salinas , Técnicas de Tipificación Bacteriana , Composición de Base , Chile , ADN Bacteriano/genética , Clima Desértico , Ácido Diaminopimélico/química , Ácidos Grasos/química , Micromonospora/clasificación , Micromonospora/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Can J Microbiol ; 67(4): 332-341, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33136441

RESUMEN

Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.


Asunto(s)
Chlorobi/aislamiento & purificación , Chlorobi/fisiología , Lagos/microbiología , Chlorobi/clasificación , Calor , Lagos/química , Sulfato de Magnesio/análisis , Sulfato de Magnesio/metabolismo , Fijación del Nitrógeno , Procesos Fototróficos , Filogenia , Estaciones del Año , Sulfuros/análisis , Sulfuros/metabolismo , Washingtón
6.
Int J Syst Evol Microbiol ; 70(4): 2859-2866, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32195651

RESUMEN

A Gram-stain-negative, catalase- and oxidase-positive, aerobic, rod-shaped, motile strain (PYC7WT) was isolated from Lake Pengyanco on the Tibetan Plateau. Comparisons based on 16S rRNA gene sequences showed that strain PYC7WT belongs to the genus Halomonas, with Halomonas malpeensis YU-PRIM-29T and Halomonas johnsoniae T68687T as its closest neighbours (96.8 and 96.6 % 16S rRNA gene sequence similarity, respectively), and only 93.1 % 16S rRNA gene sequence similarity to Halomonas elongata ATCC 33173T. The predominant respiratory quinone of strain PYC7WT is Q-9, with Q-8 as a minor component. The major fatty acids are C18 : 1 ω6c and / or C18 : 1 ω7c, C16 : 0, C16 : 1 ω6c and/or C16 : 1 ω7c, and C12 : 0 3OH. The polar lipids of strain PYC7WT include phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. Genome sequencing revealed a genome size of 4.79 Mbp and a G+C content of 62.9 mol%. DNA-DNA hybridization values of strain PYC7WT showed 45, 30 and 38 % relatedness with Halomonas johnsoniae DSM 21197T, Halomonas hamiltonii DSM 21196T and Halomonas stevensii DSM 21198T, respectively. Combining phenotypic, biochemical, genotypic and DNA-DNA hybridization data, we propose that strain PYC7WT represents a novel species within the genus Halomonas and to have the name Halomonas montanilacus sp. nov.; PYC7WT (=CICC 24506T= KCTC 62529T) is the type strain.


Asunto(s)
Halomonas/clasificación , Lagos/microbiología , Filogenia , Aguas Salinas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Halomonas/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
Int J Syst Evol Microbiol ; 70(7): 4250-4260, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32568031

RESUMEN

Two yellow-pigmented, Gram-stain-negative, aerobic, rod-shaped bacteria were isolated from the water of the hypersaline Chaka Salt Lake (strain SaA2.12T) and sediment of Qinghai Lake (strain LaA7.5T), PR China. According to the 16S rRNA phylogeny, the isolates belong to the genus Flavobacterium, showing the highest 16S rRNA sequence similarities to Flavobacterium arcticum SM1502T(97.6-97.7 %) and Flavobacterium suzhouense XIN-1T(96.5-96.6 %). Moreover, strains SaA2.12T and LaA7.5T showed 99.73 % 16S rRNA sequence similarity to each other. Major fatty acids, respiratory quinones and polar lipids detected in these isolates were iso-C15 : 0, menaquinone-6 and phosphatidylethanolamine, respectively. Strains SaA2.12T and LaA7.5T showed significant unique characteristics between them as well as between the closest phylogenetic members. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between SaA2.12T and its closest neighbours were 25.3 and 82.8 %, respectively; whereas these values (highest) between LaA7.5T and its closest members were 25.2 and 82.8 %, respectively. The dDDH and ANI values between strains SaA2.12T and LaA7.5T were calculated as 75.9 and 97.2 %, respectively. Therefore, based on polyphasic data, we propose that strain SaA2.12T represents a novel species with the name Flavobacterium salilacus sp. nov., with the type strain SaA2.12T (=KCTC 72220T=MCCC 1K03618T) and strain LaA7.5T as a subspecies within novel Flavobacterium salilacus with the name Flavobacterium salilacus subsp. altitudinum subsp. nov., with the type strain LaA7.5T (=KCTC 72806T=MCCC 1K04372T). These propositions automatically create Flavobacterium salilacus subsp. salilacus subsp. nov. with SaA2.12T (=KCTC 72220T=MCCC 1K03618T) as the type strain.


Asunto(s)
Flavobacterium/clasificación , Lagos/microbiología , Filogenia , Aguas Salinas , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacterium/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Extremophiles ; 24(6): 875-885, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32955600

RESUMEN

Inland athalassohaline solar salterns provide unique opportunity to study microbial successions along salinity gradients that resemble transition in natural hypersaline lakes. We analyzed for the first time 16S rRNA gene amplicon sequences of bacteria (V1-V2) and archaea (V4-V5) in saltern brines of India's largest inland hypersaline Sambhar Lake. Brines of the salterns (S1-S4) are alkaline (pH 9.5-10.5) with salinities of 130, 170, 280 and 350 gL-1 respectively. 16S rRNA gene copy-number of archaea outnumbered that of bacteria in all salterns. Their diversity also increased along S1 through S4, while that of bacteria decreased. Brines of S3 and S4 were dominated by specialized extreme halophilic bacterial (Halanaerobiales, Rhodothermaceae) and archaeal (Halobacteriales, Haloferacales) members with recognized salt-in strategy for osmoadaptation. Microbial assemblages positively correlated to saltern pH, total salinity, and ionic composition. Archaea in S1 and S2 were unprecedentedly represented by poorly known as-yet uncultivated groups, Woesearchaeota (90.35-93.51%) and Nanohaloarchaeota that belong to the newly proposed nano-sized superphylum DPANN. In fact, these taxa were identified in archaeal datasets of other athalassohaline salterns after re-analysis using latest RDP database. Thus, microbial compositions in hypersaline lakes are complex and need revisit particularly for their archaeal diversity to understand their hitherto unknown ecological function in extreme environments.


Asunto(s)
Lagos/microbiología , Microbiota , Filogenia , Aguas Salinas , Archaea/clasificación , Bacterias/clasificación , India , ARN Ribosómico 16S/genética , Salinidad
9.
Extremophiles ; 22(5): 811-823, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30014241

RESUMEN

Chott El Jerid is the largest hypersaline ephemeral lake in southern Tunisian Sahara desert and is one of the biggest depressions at the North of Africa. This study aimed to investigate the diversity and abundance of microbial communities inhabiting Chott El Jerid during wet season (when it was flooded), using molecular methods [Illumina Miseq sequencing, DGGE and qPCR (qPCR)]. 16S rRNA gene analyses revealed that bacterial community was dominated by Proteobacteria (especially Ralstonia species), followed by Firmicutes, Bacteroidetes, Cyanobacteria, Actinobacteria and Verrucomicrobia. The results obtained using prokaryotic universal primers showed low relative abundance of Archaea dominated by few OTUs related to Methanosarcinaceae and Methanomassiliicoccaceae families and the presence of sulfate-reducing Archaea affiliated with Archaeoglobus. However, the results obtained using Archaea-specific primers showed that archaeal community was mainly composed of aerobic Halobacteria (especially Halorubrum species) and anaerobic members of Methanomicrobia. These results also provided evidence for the presence of members of the genus Halohasta in this environment. qPCR results revealed that Archaea were more abundant in studied samples than Bacteria. The sulfate-reducing Bacteria were also found abundant (~ one-third of the bacterial community) and outnumbered methanogens, suggesting their potential important role in this sulfate-rich and hypersaline ecosystem.


Asunto(s)
Lagos/microbiología , Microbiota , Salinidad , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ambientes Extremos , Lagos/química
10.
Mol Biol Rep ; 45(5): 1297-1309, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30062501

RESUMEN

The screening of bacteria and archaea from Chott El Jerid, a hypersaline lake in the south of Tunisia, led to the isolation of 68 extremely halophilic prokaryotes growing in media with 15-25% of salt. Assessment of 68 partial 16S rRNA analyzed by amplified rDNA restriction analysis (ARDRA) revealed 15 different bacterial and archaeal taxonomic groups. Based on ARDRA results, phenotypic and hydrolytic activity tests, 20 archaeal and 6 bacterial isolates were selected for sequencing. The halophilic isolates were identified as members of the genera: Salicola, Bacillus, Halorubrum, Natrinema and Haloterrigena. Most of these isolates are able to produce hydrolytic enzymes such as amylase, protease, lipase, cellulase, xylanase, pectinase and some of them showed combined activities. Natrinema genus is an excellent candidate for lipase production. These results indicated that the extremely halophilic archaea and bacteria from Chott El Jerid are a potential source of hydrolytic enzymes and may possess commercial value.


Asunto(s)
Archaea/enzimología , Bacterias/enzimología , Halobacteriales/enzimología , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Clasificación/métodos , Enzimas/análisis , Enzimas/clasificación , Halobacteriales/clasificación , Halobacteriales/aislamiento & purificación , Lagos , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Análisis de Secuencia de ADN , Túnez , Microbiología del Agua
11.
Environ Monit Assess ; 190(3): 169, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476272

RESUMEN

The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acigöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-µ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acigöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.


Asunto(s)
Monitoreo del Ambiente , Ambientes Extremos , Lagos/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Medición de Riesgo , Salinidad , Oligoelementos/análisis , Turquía
12.
Int J Syst Evol Microbiol ; 67(10): 4161-4167, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28920839

RESUMEN

Two proteolytic bacterial strains, BSker2T and BSker3T, were enriched from sediments of hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia) with chicken feathers as substrate, followed by pure culture isolation on hypersaline alkaline media with casein. The cells were non-motile, filamentous, flexible rods. The isolates were obligately aerobic heterotrophs utilizing proteins and peptides as growth substrates. Both were obligate alkaliphiles, but differed in their pH optimum for growth: pH 9.5-9.8 for Bsker2T and pH 8.5-8.8 for BSker3T. The salt range for growth of both isolates was between 2 and 4.5 M total Na+ with an optimum at 2.5-3 M. No organic osmolytes were detected in cells of BSker2T, but they accumulated high intracellular concentrations of K+. The polar lipid fatty acids were dominated by unsaturated C16 and C18 species. The 16S rRNA gene phylogeny indicated that both strains belong to the recently proposed phylum Rhodothermaeota. BSker2T forms a novel genus-level branch, while BSker3T represents a novel species-level member in the genus Longimonas. On the basis of distinct phenotypic and genotypic properties, strain BSker2T (=JCM 31342T=UNIQEM U1009T) is proposed to be classified as a representative of a novel genus and species, Natronotalea proteinilyticagen. nov., sp. nov., and strain BSker3T (=JCM 31343T=UNIQEM U1010T) as a representative of a novel species, Longimonas haloalkaliphila sp. nov.


Asunto(s)
Álcalis , Bacteroidetes/clasificación , Lagos/microbiología , Filogenia , Salinidad , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
13.
Extremophiles ; 20(2): 125-38, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26724953

RESUMEN

Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 10(6) DNA copies g(-1) whereas archaea varied between 5 × 10(5) and 10(6) DNA copies g(-1) in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.


Asunto(s)
Lagos/microbiología , Microbiota , Salinidad , Tolerancia a la Sal , Archaea/aislamiento & purificación , Deinococcus/aislamiento & purificación , Firmicutes/aislamiento & purificación , Lagos/química , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Thermus/aislamiento & purificación , Túnez
14.
Sci Total Environ ; 868: 161612, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36642270

RESUMEN

Inland saline lakes are widely distributed and commonly exist in arid and semi-arid regions. Dissolved organic matter (DOM) in saline lakes plays an important role in the global carbon cycle and is a key regulator of saline lake ecosystem functions through biotic and abiotic processes. However, the origin, composition, and cycling of DOM in saline lakes, especially hypersaline lakes, remain largely unknown. In this study, two lake brine DOM samples and three input river DOM samples from a hypersaline lake, Da Qaidam Lake (DQL) in the Qaidam Basin of the Qinghai-Tibet Plateau (QTP), were isolated and analyzed using a multi-analytical approach. The results indicated that, although terrestrial in origin, the DOM composition and features of DQL were dominated by indigenous in-lake processes owing to the very long water residence time of the lake brine. Lake DOM contained more aliphatic compounds but fewer aromatic compounds than DOM from the rivers. Lake DOM also exhibited more chemodiversity and contained highly saturated and oxidized components that were incorporated with heteroatoms. Despite the limited contributions from riverine DOM, some special features of lake DOM, such as the high content of sulfur-bearing components, may be partly related to the long-term accumulation of hotspring riverine input. Flocculation, photodegradation, microbial degradation, evapo-concentration, and primary production processes were considered synergistic factors in the persistence and features of the hypersaline lake DOM. The results of this study can further our knowledge of the transformation and long-term turnover of DOM in hypersaline lakes and how DOM chemodiversity changes across wide aquatic ecosystems.

15.
Environ Microbiome ; 17(1): 60, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36544228

RESUMEN

Lake Hillier is a hypersaline lake known for its distinctive bright pink color. The cause of this phenomenon in other hypersaline sites has been attributed to halophiles, Dunaliella, and Salinibacter, however, a systematic analysis of the microbial communities, their functional features, and the prevalence of pigment-producing-metabolisms has not been previously studied. Through metagenomic sequencing and culture-based approaches, our results evidence that Lake Hillier is composed of a diverse set of microorganisms including archaea, bacteria, algae, and viruses. Our data indicate that the microbiome in Lake Hillier is composed of multiple pigment-producer microbes, including Dunaliella, Salinibacter, Halobacillus, Psychroflexus, Halorubrum, many of which are cataloged as polyextremophiles. Additionally, we estimated the diversity of metabolic pathways in the lake and determined that many of these are related to pigment production. We reconstructed complete or partial genomes for 21 discrete bacteria (N = 14) and archaea (N = 7), only 2 of which could be taxonomically annotated to previously observed species. Our findings provide the first metagenomic study to decipher the source of the pink color of Australia's Lake Hillier. The study of this pink hypersaline environment is evidence of a microbial consortium of pigment producers, a repertoire of polyextremophiles, a core microbiome and potentially novel species.

16.
Biology (Basel) ; 11(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35741352

RESUMEN

The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.

17.
Front Microbiol ; 12: 701414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650523

RESUMEN

Viruses play vital biogeochemical and ecological roles by (a) expressing auxiliary metabolic genes during infection, (b) enhancing the lateral transfer of host genes, and (c) inducing host mortality. Even in harsh and extreme environments, viruses are major players in carbon and nutrient recycling from organic matter. However, there is much that we do not yet understand about viruses and the processes mediated by them in the extreme environments such as hypersaline habitats. The Great Salt Lake (GSL) in Utah, United States is a hypersaline ecosystem where the biogeochemical role of viruses is poorly understood. This study elucidates the diversity of viruses and describes virus-host interactions in GSL sediments along a salinity gradient. The GSL sediment virosphere consisted of Haloviruses (32.07 ± 19.33%) and members of families Siphoviridae (39.12 ± 19.8%), Myoviridae (13.7 ± 6.6%), and Podoviridae (5.43 ± 0.64%). Our results demonstrate that salinity alongside the concentration of organic carbon and inorganic nutrients (nitrogen and phosphorus) governs the viral, bacteria, and archaeal diversity in this habitat. Computational host predictions for the GSL viruses revealed a wide host range with a dominance of viruses that infect Proteobacteria, Actinobacteria, and Firmicutes. Identification of auxiliary metabolic genes for photosynthesis (psbA), carbon fixation (rbcL, cbbL), formaldehyde assimilation (SHMT), and nitric oxide reduction (NorQ) shed light on the roles played by GSL viruses in biogeochemical cycles of global relevance.

18.
Front Microbiol ; 12: 686549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777269

RESUMEN

Sambhar Salt Lake, situated in the state of Rajasthan, India is a unique temperate hypersaline ecosystem. Exploration of the salt lake microbiome will enable us to understand microbiome functioning in nutrient-deprived extreme conditions, as well as enrich our understanding of the environment-specific microbiome evolution. The current study has been designed to explore the Sambhar Salt Lake microbiome with a culture-independent multi-omics approach to define its metagenomic features and prevalent metabolic functionaries. The rRNA feature and protein feature-based phylogenetic reconstruction synchronously (R = 0.908) indicated the dominance of the archaea (Euryarchaeota) and bacteria (Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria). Metabolic reconstruction identified selective enrichment of the protein features associated with energy harvesting and stress tolerance (osmotic, oxidative, metal/metalloid, heat/cold, antibiotic, and desiccation). Metabolites identified with metabolome analysis confirmed physiological adaptation of the lake microbiome within a hypersaline and nutrient-deprived environment. Comparative metagenomics of the 212 metagenomes representing freshwater, alkaline, and saline ecosystem microbiome indicated the selective enrichment of the microbial groups and genetic features. The current study elucidates microbiome functioning within the nutrient-deprived harsh ecosystems. In summary, the current study harnessing the strength of multi-omics and comparative metagenomics indicates the environment-specific microbiome evolution.

19.
J Environ Health Sci Eng ; 18(2): 961-971, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312616

RESUMEN

PURPOSE: In this study, the culturable halophilic and halotolerant bacterial diversity was determined in Aran-Bidgol as a thalassohaline seasonal hypersaline lake in Iran. METHODS: Thirty water, soil, sediments, coastal mud, multi-color brines and salt crystals samples were extracted and cultured using different media and incubation conditions. Totally 958 isolates were obtained and 87 isolates were selected for further studies, based on morphological, physiological and biochemical tests, representing different morphotypes. RESULTS: Based on 16S rRNA gene sequence analyses, the isolates exhibited 94.6-100% sequence similarity to the closest known species of the genera Bacillus, Halomonas, Oceanobacillus, Salinicoccus, Thalassobacillus, Ornithinibacillus, Halobacillus, Salicola, Virgibacillus, Aerococcus, Arthrobacter, Idiomarina, Paraliobacillus, Staphylococcus, Acinetobacter, Aneurinibacillus, Brevibacillus, Brevundimonas, Chromohalobacter, Gracilibacillus, Jeotgalicoccus, Kocuria, Marinilactibacillus, Marinobacter, Microbacterium, Paenibacillus, Paracoccus, Piscibacillus, Pseudomonas and Sediminibacillus and also, comparison of ARDRA patterns among the sequenced strains, using AluI, Bst UI and Hpa II enzymes showed that these patterns are in accordance with the phylogenetic position of these strains. CONCLUSION: The PCR-RFLP analyses suggested that ARDRA possess a functional potential for distinguishing halophilic bacteria to be used for further studies in elementary steps of isolation to reduce the tedious duplication of isolates.

20.
Biomolecules ; 10(1)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936380

RESUMEN

The large use of conventional plastics has resulted in serious environmental problems. Polyhydroxyalkanoates represent a potent replacement to synthetic plastics because of their biodegradable nature. This study aimed to screen bacteria and archaea isolated from an extreme environment, the salt lake Chott El Jerid for the accumulation of these inclusions. Among them, two archaeal strains showed positive results with phenotypic and genotypic methods. Phylogenetic analysis, based on the 16S rRNA gene, indicated that polyhydroxyalkanoate (PHA)-producing archaeal isolates CEJGTEA101 and CEJEA36 were related to Natrinema altunense and Haloterrigena jeotgali, respectively. Gas chromatography and UV-visible spectrophotometric analyses revealed that the PHA were identified as polyhydroxybutyrate and polyhydroxyvalerate, respectively. According to gas chromatography analysis, the strain CEJGTEA101 produced maximum yield of 7 wt % at 37 °C; pH 6.5; 20% NaCl and the strain CEJEA36 produced 3.6 wt % at 37 °C; pH 7; 25% NaCl in a medium supplemented with 2% glucose. Under nutritionally optimal cultivation conditions, polymers were extracted from these strains and were determined by gravimetric analysis yielding PHA production of 35% and 25% of cell dry weight. In conclusion, optimization of PHA production from inexpensive industrial wastes and carbon sources has considerable interest for reducing costs and obtaining high yield.


Asunto(s)
Halobacteriaceae/metabolismo , Polihidroxialcanoatos/metabolismo , Carbono/metabolismo , Halobacteriaceae/química , Halobacteriaceae/genética , Filogenia , Polihidroxialcanoatos/análisis , Polihidroxialcanoatos/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda