Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569926

RESUMEN

Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.


Asunto(s)
Moléculas de Adhesión Celular , Matriz Extracelular , Hipoxia-Isquemia Encefálica , Proteínas Señalizadoras YAP , Animales , Femenino , Masculino , Moléculas de Adhesión Celular/metabolismo , Ratones , Matriz Extracelular/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Proteínas Señalizadoras YAP/metabolismo , Ratones Endogámicos C57BL , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ácido Hialurónico/metabolismo , Ratones Noqueados , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
Epilepsia ; 65(7): 2099-2110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752982

RESUMEN

OBJECTIVE: Seizures can be difficult to control in infants and toddlers. Seizures with periods of apnea and hypoventilation are common following severe traumatic brain injury (TBI). We previously observed that brief apnea with hypoventilation (A&H) in our severe TBI model acutely interrupted seizures. The current study is designed to determine the effect of A&H on subsequent seizures and whether A&H has potential therapeutic implications. METHODS: Piglets (1 week or 1 month old) received multifactorial injuries: cortical impact, mass effect, subdural hematoma, subarachnoid hemorrhage, and seizures induced with kainic acid. A&H (1 min apnea, 10 min hypoventilation) was induced either before or after seizure induction, or control piglets received subdural/subarachnoid hematoma and seizure without A&H. In an intensive care unit, piglets were sedated, intubated, and mechanically ventilated, and epidural electroencephalogram was recorded for an average of 18 h after seizure induction. RESULTS: In our severe TBI model, A&H after seizure reduced ipsilateral seizure burden by 80% compared to the same injuries without A&H. In the A&H before seizure induction group, more piglets had exclusively contralateral seizures, although most piglets in all groups had seizures that shifted location throughout the several hours of seizure. After 8-10 h, seizures transitioned to interictal epileptiform discharges regardless of A&H or timing of A&H. SIGNIFICANCE: Even brief A&H may alter traumatic seizures. In our preclinical model, we will address the possibility of hypercapnia with normoxia, with controlled intracranial pressure, as a therapeutic option for children with status epilepticus after hemorrhagic TBI.


Asunto(s)
Apnea , Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Hipoventilación , Convulsiones , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Porcinos , Convulsiones/etiología , Convulsiones/fisiopatología , Hipoventilación/terapia , Hipoventilación/fisiopatología , Hipoventilación/etiología , Apnea/fisiopatología , Electroencefalografía , Factores de Tiempo , Ácido Kaínico , Masculino
3.
Pediatr Radiol ; 54(3): 450-456, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37039912

RESUMEN

Effective communication of imaging findings in term hypoxic ischemic injury to family members, non-radiologist colleagues and members of the legal profession can be extremely challenging through text-based radiology reports. Utilization of three-dimensional (D) printed models, where the actual findings of the brain can be communicated via tactile perception, is a potential solution which has not yet been tested in practice. We aimed to determine the sensitivity and specificity of different groups, comprising trained radiologists, non-radiologist physicians and non-physicians, in the detection of gross disease of the cerebral cortex from 3-D printed brain models derived from magnetic resonance imaging (MRI) scans of children. Ten MRI scans in children of varying ages with either watershed pattern hypoxic ischemic injury (cortical injury) or basal-ganglia-thalamus hypoxic ischemic injury pattern with limited perirolandic cortical abnormalities and 2 normal MRI scans were post processed and 3-D printed. In total, 71 participants reviewed the 12 models and were required to indicate only the brain models that they felt were abnormal (with a moderate to high degree of degree of confidence). The 71 participants included in the study were 38 laypeople (54%), 17 radiographic technologists (24%), 6 nurses (8%), 5 general radiologists (7%), 4 non-radiologist physicians- 3 pediatricians and 1 neurologist (6%) and 1 emergency medical services staff (1%). The sensitivity and specificity for detecting the abnormal brains of the 71 participants were calculated. Radiologists showed the highest sensitivity (72%) and specificity (70%). Non-radiologist physicians had a sensitivity of 67.5% and a specificity of 75%. Nurses had a sensitivity of 70% and a specificity of 41.7%. Laypeople (non-medical trained) had a sensitivity of 56.1% and a specificity of 55.3%. Radiologists' high sensitivity and specificity of 72% and 70%, respectively, validates the accuracy of the 3-D-printed models in reproducing abnormalities from MRI scans. The non-radiologist physicians also had a high sensitivity and specificity. Laypeople, without any prior training or guidance in looking at the models, had a sensitivity of 56.1% and a specificity of 55.3%. These results show the potential for use of the 3-D printed brains as an alternate form of communication for conveying the pathological findings of hypoxic ischemic injury of the brain to laypeople.


Asunto(s)
Hipoxia-Isquemia Encefálica , Niño , Humanos , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo , Sensibilidad y Especificidad , Radiólogos
4.
Neurochem Res ; 48(5): 1305-1319, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36449197

RESUMEN

Given that the role of Gelsemine in neuroinflammation has been demonstrated, this research aimed to investigate the effect of Gelsemine on neonatal hypoxic-ischemic (HI) brain injury. An in vivo HI brain injury neonatal mouse model and an in vitro oxygen-glucose deprivation (OGD) cell model were established and pretreated with Gelsemine. The brain infarct volume, neuronal loss and apoptosis, as well as spatial learning and memory were examined by TTC staining, Nissl's staining, TUNEL staining and Morris water maze test. Immunohistochemical staining was applied to detect the microglia cells and astrocytes in the mouse brain tissue. The cell viability was analyzed by CCK-8 assay. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), TNF-α, IL-1ß, and IL-6 were determined via ELISA. The lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) level in OGD-treated cells were detected by colorimetry and DCFH-DA staining. Nrf2, HO-1, and inflammation-related factors were analyzed by immunofluorescence, qRT-PCR, or western blot. Gelsemine reduced the infarct volume and neuronal loss and apoptosis, yet improved spatial learning and memory impairment of HI-injured mice. Gelsemine inhibited the elevated MDA, TNF-α, IL-1ß, IL-6, LDH and ROS levels, promoted the reduced SOD level and viability, and strengthened the up-regulation of HO-1 and Nrf2 in brain tissues and OGD-treated cells. However, Nrf2 silencing reversed the effects of Gelsemine on the Nrf2/HO-1 pathway, inflammation, and oxidative stress in OGD-treated cells. Gelsemine produces neuroprotective effects on neonatal mice with HI brain injury by suppressing inflammation and oxidative stress via Nrf2/HO-1 pathway.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Animales Recién Nacidos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Oxígeno/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Superóxido Dismutasa/metabolismo , Daño por Reperfusión/metabolismo
5.
Pediatr Radiol ; 53(1): 104-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35882664

RESUMEN

BACKGROUND: Ulegyria is an under-recognized and underreported potential sequela of hypoxic-ischemic injury (HII) in full-term neonates. Ulegyria is a unique form of parenchymal scarring that leads to a mushroom-shape of the affected gyri resulting from volume loss at the deep portions of the sulci during HII in this specific period in infantile neurodevelopment. Identifying ulegyria is important for ascribing cause and timing of HII on delayed magnetic resonance imaging (MRI) scans and because of its close association with pharmaco-resistant epilepsy. OBJECTIVE: The purpose of this study was to determine the frequency of ulegyria and characterize the anatomical distribution of watershed injury in a large database of patients who developed cerebral palsy with term HII pattern and underwent delayed MRI. MATERIALS AND METHODS: Patients with term HII patterns on MRI were analyzed for ulegyria. The frequency of ulegyria overall and for each pattern of HII distribution was determined as was the anatomical distribution of watershed injury. RESULTS: Of the 731 children with term HII and cortical injury, 484 (66%) had ulegyria. Ulegyria was most common in those cases with a combined watershed/basal ganglia-thalamic pattern (56%) and isolated watershed pattern (40%). Watershed injury in patients with ulegyria was most common at the posterior watershed (80.6%) and perisylvian watershed (76.7%). CONCLUSION: Ulegyria was present in nearly two-thirds of patients with term HII and cortical injury and should be sought to support the diagnosis of previous perinatal HII, especially in posterior and perisylvian watershed regions. The implications of ulegyria can be significant for clinical decision-making and for ascribing timing of injury to the perinatal period.


Asunto(s)
Parálisis Cerebral , Epilepsia , Hipoxia-Isquemia Encefálica , Recién Nacido , Embarazo , Femenino , Humanos , Niño , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Parálisis Cerebral/complicaciones
6.
Pediatr Radiol ; 53(9): 1854-1862, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37249622

RESUMEN

This technical innovation assesses the adaptability of some common automated segmentation tools on abnormal pediatric magnetic resonance (MR) brain scans. We categorized 35 MR scans by pathologic features: (1) "normal"; (2) "atrophy"; (3) "cavity"; (4) "other." The following three tools, (1) Computational Anatomy Toolbox version 12 (CAT12); (2) Statistical Parametic Mapping version 12 (SPM12); and (3) MRTool, were tested on each scan-with default and adjusted settings. Success was determined by radiologist consensus on the surface accuracy. Automated segmentation failed in scans demonstrating severe surface brain pathology. Segmentation of the "cavity" group was ineffective, with success rates of 23.1% (CAT12), 69.2% (SPM12) and 46.2% (MRTool), even with refined settings and manual edits. Further investigation is required to improve this workflow and automated segmentation methodology for complex surface pathology.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Neuroimagen , Atrofia/patología , Procesamiento de Imagen Asistido por Computador/métodos
7.
J Digit Imaging ; 36(1): 17-28, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36280655

RESUMEN

Cortical injury on the surface of the brain in children with hypoxic ischemic injury (HII) can be difficult to demonstrate to non-radiologists and lay people using brain images alone. Three-dimensional (3D) printing is helpful to communicate the volume loss and pathology due to HII in children's brains. 3D printed models represent the brain to scale and can be held up against models of normal brains for appreciation of volume loss. If 3D printed brains are to be used for formal communication, e.g., with medical colleagues or in court, they should have high fidelity of reproduction of the actual size of patients' brains. Here, we evaluate the size fidelity of 3D printed models from MRI scans of the brain, in children with prior HII. Twelve 3D prints of the brain were created from MRI scans of children with HII and selected to represent a variety of cortical pathologies. Specific predetermined measures of the 3D prints were made and compared to measures in matched planes on MRI. Fronto-occipital length (FOL) and bi-temporal/bi-parietal diameters (BTD/BPD) demonstrated high interclass correlations (ICC). Correlations were moderate to weak for hemispheric height, temporal height, and pons-cerebellar thickness. The average standard error of measurement (SEM) was 0.48 cm. Our results demonstrate high correlations in overall measurements of each 3D printed model derived from brain MRI scans versus the original MRI, evidenced by high ICC values for FOL and BTD/BPD. Measures with low correlation values can be explained by variability in matching the plane of measurement to the MRI slice orientation.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Impresión Tridimensional
8.
Cell Commun Signal ; 20(1): 55, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443669

RESUMEN

BACKGROUND: Synapses can adapt to changes in the intracerebral microenvironment by regulation of presynaptic neurotransmitter release and postsynaptic neurotransmitter receptor expression following hypoxic ischemia (HI) injury. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) exerts a protective effect on neurons after HI and may be involved in maintaining the function of synaptic networks. In this study, we investigated the changes in the expression of NAAG, glutamic acid (Glu) and metabotropic glutamate receptors (mGluRs), as well as the dynamic regulation of neurotransmitters in the brain after HI, and assessed their effects on synaptic plasticity of the cerebral cortex. METHODS: Thirty-six Yorkshire newborn pigs (3-day-old, males, 1.0-1.5 kg) were selected and randomly divided into normal saline (NS) group (n = 18) and glutamate carboxypeptidase II inhibition group (n = 18), both groups were divided into control group, 0-6 h, 6-12 h, 12-24 h, 24-48 h and 48-72 h groups (all n = 3) according to different post-HI time. The content of Glu and NAAG after HI injury were detected by 1H-MRS scanning, immunofluorescence staining of mGluRs, synaptophysin (syph) along with postsynaptic density protein-95 (PSD95) and transmission electron microscopy were performed. ANOVA, Tukey and LSD test were used to compare the differences in metabolite and protein expression levels among subgroups. Correlation analysis was performed using Pearson analysis with a significance level of α = 0.05. RESULTS: We observed that the NAAG and mGluR3 expression levels in the brain increased and then decreased after HI and was significantly higher in the 12-24 h (P < 0.05, Tukey test). There was a significant positive correlation between Glu content and the expression of mGluR1/mGluR5 after HI with r = 0.521 (P = 0.027) and r = 0.477 (P = 0.045), respectively. NAAG content was significantly and positively correlated with the level of mGluR3 expression (r = 0.472, P = 0.048). When hydrolysis of NAAG was inhibited, the expression of synaptic protein PSD95 and syph decreased significantly. CONCLUSIONS: After 12-24 h of HI injury, there was a one-time elevation in NAAG levels, which was consistent with the corresponding mGluR3 receptor expression trend; the NAAG maintains cortical synaptic plasticity and neurotransmitter homeostasis by inhibiting presynaptic glutamate vesicle release, regulating postsynaptic density proteins and postsynaptic receptor expression after pathway activation. Video abstract.


Asunto(s)
Dipéptidos , Receptores de Glutamato Metabotrópico , Animales , Corteza Cerebral/metabolismo , Dipéptidos/metabolismo , Dipéptidos/farmacología , Ácido Glutámico , Isquemia , Masculino , Plasticidad Neuronal/fisiología , Neurotransmisores/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Porcinos
9.
Pediatr Radiol ; 51(9): 1738-1747, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33687495

RESUMEN

Brain ultrasound has become a critical tool for bedside screening and monitoring of hypoxic-ischemic injury in infants. Transfontanellar ultrasound in infants allows delineation of anatomical structures of the brain and posterior fossa. The technique's low cost, lack of ionizing radiation and repeatability make it a popular alternative to magnetic resonance imaging. The published literature on interpreting hypoxic-ischemic injury on brain ultrasound is wide and varied, yet diagnostic challenges remain when detecting subtle or diffuse changes. This pictorial essay summarizes and illustrates the spectrum of sonographic findings of hypoxic-ischemic injuries in term infants.


Asunto(s)
Hipoxia-Isquemia Encefálica , Encéfalo , Humanos , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Lactante , Imagen por Resonancia Magnética , Ultrasonografía
10.
Pediatr Radiol ; 51(12): 2270-2283, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33599780

RESUMEN

Brain contrast-enhanced ultrasound (CEUS) is an emerging application that can complement gray-scale US and yield additional insights into cerebral flow dynamics. CEUS uses intravenous injection of ultrasound contrast agents (UCAs) to highlight tissue perfusion and thus more clearly delineate cerebral pathologies including stroke, hypoxic-ischemic injury and focal lesions such as tumors and vascular malformations. It can be applied not only in infants with open fontanelles but also in older children and adults via a transtemporal window or surgically created acoustic window. Advancements in CEUS technology and post-processing methods for quantitative analysis of UCA kinetics further elucidate cerebral microcirculation. In this review article we discuss the CEUS examination protocol for brain imaging in children, current clinical applications and future directions for research and clinical uses of brain CEUS.


Asunto(s)
Encéfalo , Medios de Contraste , Adulto , Encéfalo/diagnóstico por imagen , Niño , Humanos , Lactante , Microcirculación , Ultrasonografía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda