Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 30(38): e202401064, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703115

RESUMEN

Platinum-based chemotherapeutic agents are widely used in the treatment of cancer. However, their effectiveness is limited by severe adverse reactions, drug resistance, and poor water solubility. This study focuses on the synthesis and characterization of new water-soluble cationic monofunctional platinum(II) complexes starting from the [PtCl(η1-C2H4OEt)(phen)] (1, phen=1,10-phenanthroline) precursor, specifically [Pt(NH3)(η1-C2H4OEt)(phen)]Cl (2), [Pt(1-hexyl-1H-imidazole)(η1-C2H4OEt)(phen)]Cl (3), and [Pt(1-hexyl-1H-benzo[d]imidazole)(η1-C2H4OEt)(phen)]Cl (4), which deviate from traditional requirements for antitumor activity. These complexes were evaluated for their cytotoxic effects in comparison to cisplatin, using immortalized cervical adenocarcinoma cells (HeLa), human renal carcinoma cells (Caki-1), and normal human renal cells (HK-2). While complex 2 showed minimal effects on the cell lines, complexes 3 and 4 demonstrated higher cytotoxicity than cisplatin. Notably, complex 4 displayed the highest cytotoxicity in both cancer and normal cell lines. However, complex 3 exhibited the highest selectivity for renal tumor cells (Caki-1) among the tested complexes, compared to healthy cells (HK-2). This resulted in a significantly higher selectivity than that of cisplatin and complex 4. Therefore, complex 3 shows potential as a leading candidate for the development of a new generation of platinum-based anticancer drugs, utilizing biocompatible imidazole ligands while demonstrating promising anticancer properties.


Asunto(s)
Antineoplásicos , Imidazoles , Fenantrolinas , Solubilidad , Agua , Humanos , Fenantrolinas/química , Fenantrolinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Imidazoles/química , Imidazoles/farmacología , Ligandos , Agua/química , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Cisplatino/farmacología , Platino (Metal)/química , Cationes/química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/síntesis química , Células HeLa , Ensayos de Selección de Medicamentos Antitumorales
2.
Inorganica Chim Acta ; 489: 170-179, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31749461

RESUMEN

In this work we report the synthesis of five new nickel(II) complexes all coordinated to the tripodal ligand tris(1-ethyl-4- i Pr-imidazolyl)phosphine (TlEt4iPrIP). They are [Ni(T1Et4iPrIP)(CH3CN)2(OTf)](OTf) (1), [Ni(T1Et4iPrIP)(OTf)2] (2), [Ni(T1Et4iPrIP)(H2O)(OTf)](OTf) (3), [Ni(T1Et4iPrIP)Cl](OTf) (4), and [Ni(T1Et4iPrIP)Cl2] (5). The complexes serve as bioinorganic structural model complexes for histidine-coordinated nickel proteins. The X-ray structures have been determine for all complexes which feature coordination numbers 4-6. We investigated the spectroscopic interconversions for these compound in dichloromethane solution and demonstrate interconversion between 1-3 and conversion of 2 to 4. Complex 5 can be spectroscopically converted to the cation of 4 by dissolving it in dichloromethane. Fits of variable temperature magnetic susceptibility data yielded the following parameters: g = 1.944, D = -0.327 cm-1, E/D = 3.706 for 1; g = 2.280, D = -0.365 cm-1, E/D = 22.178 for 2; g = 2.000, D = -7.402 cm-1, E/D = -0.272 for 3; g = 2.176, D = -0.128 cm-1, E/D = -0.783 for 4; g = 2.258, D = 14.288 cm-1, E/D = 0.095 for 5. DFT structure optimizations afforded HOMO and LUMO energies indicating that complex 1 is the most stable.

3.
Eur J Inorg Chem ; 2018(44): 4797-4804, 2018 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-32577096

RESUMEN

We present the synthesis, properties, and characterization of [Fe(T1Et4iPrIP)(NO)(H2O)2](OTf)2 (1) (T1Et4iPrIP = Tris(1-ethyl-4-isopropyl-imidazolyl)phosphine) as a model for the nitrosyl adduct of gentisate 1,2-dioxygenase (GDO). The further characterization of [Fe(T1Et4iPrIP)(THF)(NO)(OTf)](OTf) (2) which was previously communicated (Inorg. Chem. 2014, 53, 5414) is also presented. The weighted average Fe-N-O angle of 162° for 1 is very close to linear (≥ 165°) for these types of complexes. The coordinated water ligands participate in hydrogen bonding interactions. The spectral properties (EPR, UV-vis, FTIR) for 1 are compared with 2 and found to be quite comparable. Complex 1 closely follows the relationship between the Fe-N-O angle and NO vibrational frequency which was previously identified for 6-coordinate {FeNO}7 complexes. Liquid FTIR studies on 2 indicate that the ν(NO) vibration position is sensitive to solvent shifting to lower energy (relative to the solid) in donor solvent THF and shifting to higher energy in dichloromethane. The basis for this behavior is discussed. The K eq for NO binding in 2 was calculated in THF and found to be 470 M-1. Density functional theory (DFT) studies on 1 indicate donation of electron density to the iron center from the π* orbitals of formally NO-. Such a donation accounts for the near linearity of the Fe-N-O bond and the large ν(NO) value of 1791 cm-1.

4.
Acta Crystallogr C Struct Chem ; 72(Pt 9): 658-63, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27585928

RESUMEN

The design and synthesis of functional coordination polymers is motivated not only by their structural beauty but also by their potential applications. Zn(II) and Cd(II) coordination polymers are promising candidates for producing photoactive materials because these d(10) metal ions not only possess a variety of coordination numbers and geometries, but also exhibit luminescence properties when bound to functional ligands. It is difficult to predict the final structure of such polymers because the assembly process is influenced by many subtle factors. Bis(imidazol-1-yl)-substituted alkane/benzene molecules are good bridging ligands because their flexibility allows them to bend and rotate when they coordinate to metal centres. Two new Zn(II) and Cd(II) coordination polymers based on mixed ligands, namely, poly[[µ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(µ3-2,2-dimethylbutanoato-κ(3)O(1):O(4):O(4'))dizinc(II)], [Zn2(C6H8O4)2(C14H14N4)]n, and poly[[µ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(µ3-2,2-dimethylbutanoato-κ(5)O(1),O(1'):O(4),O(4'):O(4))dicadmium(II)], [Cd2(C6H8O4)2(C14H14N4)]n, have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. Both complexes crystallize in the monoclinic space group C2/c with similar unit-cell parameters and feature two-dimensional structures formed by the interconnection of S-shaped Zn(Cd)-2,2-dimethylsuccinate chains with 1,4-bis(imidazol-1-ylmethyl)benzene bridges. However, the Cd(II) and Zn(II) centres have different coordination numbers and the 2,2-dimethylsuccinate ligands display different coordination modes. Both complexes exhibit a blue photoluminescence in the solid state at room temperature.

5.
Acta Crystallogr C Struct Chem ; 70(Pt 5): 428-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24816006

RESUMEN

In the coordination polymer catena-poly[[[diaqua[5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylato-κ(2)N(3),O(4)]lead(II)]-µ-5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylato-κ(3)N(3),O(4):N(2)] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5-carboxy-2-(pyridin-3-yl)-1H-imidazole-4-carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links Pb(II) cations into one-dimensional coordination polymer chains. The structure is also stabilized by intra- and interchain π-π stacking interactions between the pyridine rings, resulting in the formation of a two-dimensional network. Extensive hydrogen-bonding interactions lead to the formation of a three-dimensional supramolecular network.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda