Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33945786

RESUMEN

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Coronavirus/clasificación , Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Reacciones Cruzadas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/inmunología , Humanos , Epítopos Inmunodominantes/química , Memoria Inmunológica , Modelos Moleculares , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
2.
J Infect Dis ; 223(10): 1743-1752, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32959055

RESUMEN

To date, no vaccine or monoclonal antibody (mAb) against Staphylococcus aureus has been approved for use in humans. Our laboratory has developed a 5-antigen S. aureus vaccine (rFSAV), which is now under efficacy evaluation in a phase 2 clinical trial. In the current study, using overlapping peptides and antiserum from rFSAV-immunized volunteers, we identified 7 B-cell immunodominant epitopes on 4 antigens in rFSAV, including 5 novel epitopes (Hla48-65, IsdB402-419, IsdB432-449, SEB78-95, and MntC7-24). Ten immunodominant epitope mAbs were generated against these epitopes, and all of them exhibited partial protection in a mouse sepsis model. Four robust mAbs were used together as an mAb cocktail to prevent methicillin-resistant S. aureus strain 252 infection. The results showed that the mAb cocktail was efficient in combating S. aureus infection and that its protective efficacy correlated with a reduced bacterial burden and decreased infection pathology, which demonstrates that the mAb cocktail is a promising S. aureus vaccine candidate.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Bacteriemia , Epítopos de Linfocito B , Epítopos Inmunodominantes , Infecciones Estafilocócicas , Animales , Anticuerpos Antibacterianos , Bacteriemia/prevención & control , Modelos Animales de Enfermedad , Staphylococcus aureus Resistente a Meticilina , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus
3.
Virol J ; 18(1): 8, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407693

RESUMEN

BACKGROUND: The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a major antigen that can induce protective antibodies in poultry. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the linear epitopes of HN, especially neutralizing epitopes, will be useful for revealing its antigenic characterization. METHODS: In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the HN protein from the vaccine strain LaSota using pepscan technology with LaSota-specific chicken hyperimmune antisera. We constructed IDEs-RFP plasmids and prepared anti-IDEs peptide mouse sera to identify IDEs through immunological tests. At last, the different diluted anti-IDE antisera were used in BHK-21 cells to perform the neutralization test. RESULTS: Five IDEs of the HN were screened and further verified by indirect immunofluorescence assays, dot blots and Western blots with NDV- and IDEs-specific antisera. All five IDEs showed good immunogenicity. IDE5 (328-342 aa) could recognize only class II NDV but did not react with the class I strain. Most of the IDEs are highly conserved among the different strains. A neutralization test in vitro showed that the peptide-specific mouse antisera of IDE4 (242-256 aa) and HN341-355, a reported neutralizing linear epitope, could partially neutralize avirulent LaSota as well as virulent strains at similar levels, suggesting that IDE4 might be a potential neutralizing linear epitope. CONCLUSION: The HN protein is a major protective antigen of NDV that can induce neutralizing antibodies in animals. We identified five IDEs of the HN using a pepscan approach with NDV-specific chicken hyperimmune antisera. The five IDEs could elicit specific antibodies in mice. IDE4 (242-256 aa) was identified as a novel potential neutralizing linear epitope. These results will help elucidate the antigenic epitopes of the HN and facilitate the development of NDV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteína HN/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Pollos , Secuencia Conservada , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Proteína HN/química , Proteína HN/genética , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Ratones , Modelos Moleculares , Pruebas de Neutralización , Virus de la Enfermedad de Newcastle/genética , Vacunas Virales/genética , Vacunas Virales/inmunología
4.
J Biol Chem ; 294(3): 941-952, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30455354

RESUMEN

Celiac disease (CeD) provides an opportunity to study the specificity underlying human T-cell responses to an array of similar epitopes presented by the same human leukocyte antigen II (HLA-II) molecule. Here, we investigated T-cell responses to the two immunodominant and highly homologous HLA-DQ2.5-restricted gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). Using HLA-DQ2.5-DQ2.5-glia-α1a and HLA-DQ2.5-DQ2.5-glia-ω1 tetramers and single-cell αß T-cell receptor (TCR) sequencing, we observed that despite similarity in biased variable-gene usage in the TCR repertoire responding to these nearly identical peptide-HLA-II complexes, most of the T cells are specific for either of the two epitopes. To understand the molecular basis of this exquisite fine specificity, we undertook Ala substitution assays revealing that the p7 residue (Leu/Gln) is critical for specific epitope recognition by both DQ2.5-glia-α1a- and DQ2.5-glia-ω1-reactive T-cell clones. We determined high-resolution binary crystal structures of HLA-DQ2.5 bound to DQ2.5-glia-α1a (2.0 Å) and DQ2.5-glia-ω1 (2.6 Å). These structures disclosed that differences around the p7 residue subtly alter the neighboring substructure and electrostatic properties of the HLA-DQ2.5-peptide complex, providing the fine specificity underlying the responses against these two highly homologous gluten epitopes. This study underscores the ability of TCRs to recognize subtle differences in the peptide-HLA-II landscape in a human disease setting.


Asunto(s)
Presentación de Antígeno , Epítopos de Linfocito T/inmunología , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Femenino , Humanos , Masculino
5.
Rheumatology (Oxford) ; 56(3): 451-456, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940597

RESUMEN

Objectives: To evaluate the effect of autologous stem cell transplantation (aSCTrans) on antibody (Ab) reactivity towards topo I in patients with SSc, and to see whether it may correlate with clinical outcome after aSCTrans. Methods: Eighteen anti-topo/Scl70-positive patients with SSc in whom non-myeloablative aSCTrans had been performed were analysed. Seven patients showed good response without relapse for several years (group 1), eight primarily responded but later relapsed and three did not respond (group 2). A total of 74 sera were analysed at different time points and tested by ELISA against full length ( fl ) topo I, truncated ( tr ) topo I and a previously identified immunodominant epitope covering amino acid 489-573. Results: Eighty-three percent had IgG Abs to topo fl and topo tr . Ab reactivity significantly decreased after aSCTrans, but remained positive in 10 of the 11 patients followed for up to 24 months. The decrease did not correlate with the clinical outcome after aSCTrans. Fifty-six percent of the patients reacted with topo489-573, and reactivity was nearly confined to group 2. There was no correlation between Ab reactivity towards topo fl or topo489-573 and the modified Rodnan Skin Score before aSCTrans or its decrease after aSCTrans. Conclusions: Although aSCTrans is a good treatment option in patients with progressive SSc, it does not abrogate Ab reactivity towards topo I. The presence of anti-topo489-573 Abs before aSCTrans may indicate a less favourable course after aSCTrans.


Asunto(s)
Autoanticuerpos/inmunología , ADN-Topoisomerasas de Tipo I/inmunología , Esclerodermia Sistémica/inmunología , Adulto , Anticuerpos Antinucleares/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Epítopos Inmunodominantes , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Proteínas Nucleares/inmunología , Pronóstico , Esclerodermia Sistémica/terapia , Trasplante de Células Madre , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
6.
Bull Exp Biol Med ; 161(4): 533-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27590768

RESUMEN

The immunoepitope database was used for analysis of experimentally detected epitopes of the respiratory syncytial virus (RSV) proteins and for selection of the epitope combinations for subsequent designing of recombinant vectored anti-RSV vaccines based on attenuated influenza viruses. Three cassettes containing the most promising B- and T-cell RSV epitopes were selected: peptide F (243-294) supporting the formation of humoral immunity in animals; fragment M2-1 (70-101+114-146) containing two MHC I epitopes (82-90 and 127-135); and MHC II-epitope (51-66). The selected constructions contained no neoepitopes causing undesirable effects of vaccination, such as immunotolerance or autoimmunity.


Asunto(s)
Epítopos/inmunología , Orthomyxoviridae/inmunología , Virus Sincitiales Respiratorios/inmunología , Animales , Ratones , Vacunas contra Virus Sincitial Respiratorio/inmunología
7.
Vaccine ; 42(17): 3733-3743, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38705805

RESUMEN

Hand, foot, and mouth disease (HFMD) poses a significant public health threat primarily caused by four major enteroviruses: enterovirus 71 (EV71), coxsackieviruses A16, A10, and A6. Broadly protective immune responses are essential for complete protection against these major enteroviruses. In this study, we designed a new tetravalent immunogen for HFMD, validated it in silico, in vivo evaluated the immunogenicity of the DNA-based tetravalent vaccine in mice, and identified immunogenic B-cell and T-cell epitopes. A new tetravalent immunogen, VP1me, was designed based on the chimeric protein and epitope-based vaccine principles. It contains a complete EV71 VP1 protein and six reported neutralizing B-cell epitopes derived from the four major enteroviruses causing HFMD. In silico validation using multiple immunoinformatic tools indicated good attributes of the VP1me immunogen suitable for vaccine development. The VP1me-based DNA vaccine efficiently induced both humoral and cellular immune responses in BALB/cAJcl mice. A combination of in silico prediction and immunoassays enabled the identification of immunogenic linear B-cell and CD8 T-cell epitopes within the VP1me immunogen. Immunodominant linear B-cell epitopes were identified in six regions of VP1me, with one epitope located at the N-terminus of the VP1 protein (aa 9-23) regarded as a novel epitope. Interestingly, some B-cell epitopes could also induce the CD8 T-cell response, suggesting their dual functions in immune stimulation. These results lay the groundwork for further development of VP1me as a new vaccine candidate.


Asunto(s)
Anticuerpos Antivirales , Epítopos de Linfocito B , Enfermedad de Boca, Mano y Pie , Epítopos Inmunodominantes , Ratones Endogámicos BALB C , Vacunas de ADN , Vacunas Virales , Animales , Vacunas de ADN/inmunología , Epítopos de Linfocito B/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Enfermedad de Boca, Mano y Pie/inmunología , Ratones , Vacunas Virales/inmunología , Epítopos Inmunodominantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Epítopos de Linfocito T/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Enterovirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Enterovirus Humano A/inmunología , Enterovirus Humano A/genética , Inmunogenicidad Vacunal , Inmunidad Celular , Inmunidad Humoral
8.
Microbiol Spectr ; 11(4): e0447222, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428080

RESUMEN

Senecavirus A (SVA) is a type of nonenveloped single-stranded, positive-sense RNA virus. The VP2 protein is a structural protein that plays an important role in inducing early and late immune responses of the host. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the B epitopes of the VP2 protein is of great importance to revealing its antigenic characterization. In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the VP2 protein from the SVA strain CH/FJ/2017 using the Pepscan approach and a bioinformatics-based computational prediction method. The following four novel IDEs of VP2 were identified: IDE1, 41TKSDPPSSSTDQPTTT56; IDE2, 145PDGKAKSLQELNEEQW160; IDE3, 161VEMSDDYRTGKNMPF175; and IDE4, 267PYFNGLRNRFTTGT280. Most of the IDEs were highly conserved among the different strains. To our knowledge, the VP2 protein is a major protective antigen of SVA that can induce neutralizing antibodies in animals. Here, we analyzed the immunogenicity and neutralization activity of four IDEs of VP2. Consequently, all four IDEs showed good immunogenicity that could elicit specific antibodies in guinea pigs. A neutralization test in vitro showed that the peptide-specific guinea pig antisera of IDE2 could neutralize SVA strain CH/FJ/2017, and IDE2 was identified as a novel potential neutralizing linear epitope. This is the first time VP2 IDEs have been identified by using the Pepscan method and a bioinformatics-based computational prediction method. These results will help elucidate the antigenic epitopes of VP2 and clarify the basis for immune responses against SVA. IMPORTANCE The clinical symptoms and lesions caused by SVA are indistinguishable from those of other vesicular diseases in pigs. SVA has been associated with recent outbreaks of vesicular disease and epidemic transient neonatal losses in several swine-producing countries. Due to the continuing spread of SVA and the lack of commercial vaccines, the development of improved control strategies is urgently needed. The VP2 protein is a crucial antigen on the capsids of SVA particles. Furthermore, the latest research showed that VP2 could be a promising candidate for the development of novel vaccines and diagnostic tools. Hence, a detailed exploration of epitopes in the VP2 protein is necessary. In this study, four novel B-cell IDEs were identified using two different antisera with two different methods. IDE2 was identified as a new neutralizing linear epitope. Our findings will help in the rational design of epitope vaccines and further understanding of the antigenic structure of VP2.


Asunto(s)
Proteínas de la Cápside , Epítopos de Linfocito B , Animales , Cobayas , Proteínas de la Cápside/genética , Epítopos de Linfocito B/genética , Anticuerpos Antivirales , Sueros Inmunes
9.
Clin Transl Immunology ; 11(10): e1422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275878

RESUMEN

Objective: Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265-273, and its IBV and ICV homologues, presented by HLA-A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods: We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265-IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265-IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross-react towards these homologous peptides. Furthermore, we determined the structures of NP265-IAV and NP323-IBV peptides in complex with HLA-A*03:01 by X-ray crystallography. Results: Our study provides a detailed characterisation of the CD8+ T cell response towards NP265-IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265-IAV that is associated with superior anti-viral protection. Evidence of cross-reactivity between the three different influenza virus strain-derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion: We show that while there is a potential to cross-protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.

10.
Front Immunol ; 12: 684823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122448

RESUMEN

HI, a fusion protein that consists of the alpha-toxin (Hla) and the N2 domain of iron surface determinant B (IsdB), is one of the antigens in the previously reported S. aureus vaccine rFSAV and has already entered phase II clinical trials. Previous studies revealed that HI is highly immunogenic in both mice and healthy volunteers, and the humoral immune response plays key roles in HI-mediated protection. In this study, we further investigated the protective efficacy of immunization with HI plus four different adjuvants in a mouse bacteremia model. Results showed that HI-mediated protection was altered in response to different adjuvants. Using antisera from immunized mice, we identified seven B-cell immunodominant epitopes on Hla and IsdB, including 6 novel epitopes (Hla1-18, Hla84-101, Hla186-203, IsdB342-359, IsdB366-383, and IsdB384-401). The immunodominance of B-cell epitopes, total IgG titers and the levels of IFN-γ and IL-17A from mice immunized with HI plus different adjuvants were different from each other, which may explain the difference in protective immunity observed in each immunized group. Thus, our results indicate that adjuvants largely affected the immunodominance of epitopes and the protective efficacy of HI, which may guide further adjuvant screening for vaccine development and optimization.


Asunto(s)
Bacteriemia/inmunología , Toxinas Bacterianas/inmunología , Proteínas de Transporte de Catión/inmunología , Epítopos de Linfocito B/inmunología , Proteínas Hemolisinas/inmunología , Epítopos Inmunodominantes/inmunología , Infecciones Estafilocócicas/prevención & control , Animales , Bacteriemia/prevención & control , Modelos Animales de Enfermedad , Femenino , Inmunización Pasiva , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/administración & dosificación , Vacunas Estafilocócicas/inmunología
11.
Ann N Y Acad Sci ; 1497(1): 27-38, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33682151

RESUMEN

In Chagas disease (ChD) caused by Trypanosoma cruzi, new biomarkers to predict chronic cardiac pathology are urgently needed. Previous studies in chagasic patients with mild symptomatology showed that antibodies against the immunodominant R3 epitope of sCha, a fragment of the human basic helix-loop-helix transcription factor like 5, correlated with cardiac pathology. To validate sCha as a biomarker and to understand the origin of anti-sCha antibodies, we conducted a multicenter study with several cohorts of chagasic patients with severe cardiac symptomatology. We found that levels of antibodies against sCha discriminated the high risk of sudden death, indicating they could be useful for ChD prognosis. We investigated the origin of the antibodies and performed an alanine scan of the R3 epitope. We identified a minimal epitope MRQLD, and a BLAST search retrieved several T. cruzi antigens. Five of the hits had known or putative functions, of which phosphonopyruvate decarboxylase showed the highest cross-reactivity with sCha, confirming the role of molecular mimicry in the development of anti-sCha antibodies. Altogether, we demonstrate that the development of antibodies against sCha, which originated by molecular mimicry with T. cruzi antigens, could discriminate electrocardiographic alterations associated with a high risk of sudden death.


Asunto(s)
Autoanticuerpos/inmunología , Cardiomiopatía Chagásica/etiología , Cardiomiopatía Chagásica/metabolismo , Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/inmunología , Muerte Súbita/etiología , Epítopos Inmunodominantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Biomarcadores , Cardiomiopatía Chagásica/diagnóstico , Enfermedad de Chagas/parasitología , Enfermedad Crónica , Reacciones Cruzadas , Susceptibilidad a Enfermedades , Humanos , Trypanosoma cruzi/inmunología
12.
J Inflamm Res ; 14: 4267-4282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511967

RESUMEN

PURPOSE: We previously reported that monoclonal antibody (mAb) cocktail improves survival in Staphylococcus aureus infection. In this study, we used acute pneumonia model and lethal sepsis model to investigate the efficacy of antibiotic combined with epitope-specific mAb cocktail in treating MRSA252 infection. METHODS: MRSA252 was challenged by tail vein injection or tracheal intubation to establish sepsis model or pneumonia model. One hour after infection, the mice received a single intravenous injection of normal saline, vancomycin, and vancomycin combined monoclonal antibody, linezolid alone or linezolid combined monoclonal antibody. Daily record survival rate (total 7 days), bacterial load, histology, cytokine analysis of serum and alveolar lavage fluid, and in vitro determination of the neutralizing ability of antibodies to SEB toxin and Hla toxin explained the mechanism of antibody action. RESULTS: The mAb cocktail combined with low doses of vancomycin or linezolid improved survival rates in acute pneumonia model (70%, 80%) and lethal sepsis model (80%, 80%). Epitope-specific monoclonal antibodies reduced bacterial colonization in the kidneys and lungs of mice and inhibited the biological functions of the toxins Hla and SEB in vitro. Compared to the antibiotic alone or PBS groups, the combination group had higher levels of IL-1α, IL-1ß and IFN-γ and lower levels of IL-6, IL-10, TNF-α. Further, the combination of antibiotic and mAb cocktail improved infection survival against the clinical MRSA isolates in a lethal sepsis model. CONCLUSION: This study demonstrates a novel method to treat people with low immunity against drug-resistant S. aureus infections.

13.
Cell Rep ; 34(4): 108666, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503420

RESUMEN

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas Viroporinas/inmunología , Adolescente , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/terapia , Vacunas contra la COVID-19/inmunología , Niño , Epítopos de Linfocito B/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Adulto Joven
14.
Front Immunol ; 12: 785293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126354

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the causative agent of PED, an enteric disease that causes high mortality rates in piglets. PEDV is an alphacoronavirus that has high genetic diversity. Insights into neutralizing B-cell epitopes of all genetically diverse PEDV strains are of importance, particularly for designing a vaccine that can provide broad protection against PEDV. In this work, we aimed to explore the landscape of linear B-cell epitopes on the spike (S) and membrane (M) proteins of global PEDV strains. All amino acid sequences of the PEDV S and M proteins were retrieved from the NCBI database and grouped. Immunoinformatics-based methods were next developed and used to identify putative linear B-cell epitopes from 14 and 5 consensus sequences generated from distinct groups of the S and M proteins, respectively. ELISA testing predicted peptides with PEDV-positive sera revealed nine novel immunodominant epitopes on the S protein. Importantly, seven of these novel immunodominant epitopes and other subdominant epitopes were demonstrated to be neutralizing epitopes by neutralization-inhibition assay. Our findings unveil important roles of the PEDV S2 subunit in both immune stimulation and virus neutralization. Additionally, our study shows the first time that the M protein is also the target of PEDV neutralization with seven neutralizing epitopes identified. Conservancy profiles of the epitopes are also provided. In this study, we offer immunoinformatics-based methods for linear B-cell epitope identification and a more complete profile of linear B-cell epitopes across the PEDV S and M proteins, which may contribute to the development of a greater next-generation PEDV vaccine as well as peptide-based immunoassays.


Asunto(s)
Proteínas M de Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , Epítopos Inmunodominantes/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Infecciones por Coronavirus/inmunología , Porcinos
15.
PeerJ ; 9: e11021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854839

RESUMEN

BACKGROUND: Protection against the influenza virus by a specific antibody is relatively strain specific; meanwhile broader immunity may be conferred by cell-mediated immune response to the conserved epitopes across influenza virus subtypes. A universal broad-spectrum influenza vaccine which confronts not only seasonal influenza virus, but also avian influenza H5N1 virus is promising. METHODS: This study determined the specific and cross-reactive T cell responses against the highly pathogenic avian influenza A (H5N1) virus in four survivors and 33 non-H5N1 subjects including 10 H3N2 patients and 23 healthy individuals. Ex vivo IFN-γ ELISpot assay using overlapping peptides spanning the entire nucleoprotein (NP), matrix (M) and hemagglutinin (HA) derived from A/Thailand/1(KAN-1)/2004 (H5N1) virus was employed in adjunct with flow cytometry for determining T cell functions. Microneutralization (microNT) assay was performed to determine the status of previous H5N1 virus infection. RESULTS: IFN-γ ELISpot assay demonstrated that survivors nos. 1 and 2 had markedly higher T cell responses against H5N1 NP, M and HA epitopes than survivors nos. 3 and 4; and the magnitude of T cell responses against NP were higher than that of M and HA. Durability of the immunoreactivity persisted for as long as four years after disease onset. Upon stimulation by NP in IFN-γ ELISpot assay, 60% of H3N2 patients and 39% of healthy subjects exhibited a cross-reactive T cell response. The higher frequency and magnitude of responses in H3N2 patients may be due to blood collection at the convalescent phase of the patients. In H5N1 survivors, the effector peptide-specific T cells generated from bulk culture PBMCs by in vitro stimulation displayed a polyfunction by simultaneously producing IFN-γ and TNF-α, together with upregulation of CD107a in recognition of the target cells pulsed with peptide or infected with rVac-NP virus as investigated by flow cytometry. CONCLUSIONS: This study provides an insight into the better understanding on the homosubtypic and heterosubtypic T cell-mediated immune responses in H5N1 survivors and non-H5N1 subjects. NP is an immunodominant target of cross-recognition owing to its high conservancy. Therefore, the development of vaccine targeting the conserved NP may be a novel strategy for influenza vaccine design.

16.
Vaccines (Basel) ; 8(2)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526960

RESUMEN

A new coronavirus infection, COVID-19, has recently emerged, and has caused a global pandemic along with an international public health emergency. Currently, no licensed vaccines are available for COVID-19. The identification of immunodominant epitopes for both B- and T-cells that induce protective responses in the host is crucial for effective vaccine design. Computational prediction of potential epitopes might significantly reduce the time required to screen peptide libraries as part of emergent vaccine design. In our present study, we used an extensive immunoinformatics-based approach to predict conserved immunodominant epitopes from the proteome of SARS-CoV-2. Regions from SARS-CoV-2 protein sequences were defined as immunodominant, based on the following three criteria regarding B- and T-cell epitopes: (i) they were both mapped, (ii) they predicted protective antigens, and (iii) they were completely identical to experimentally validated epitopes of SARS-CoV. Further, structural and molecular docking analyses were performed in order to understand the binding interactions of the identified immunodominant epitopes with human major histocompatibility complexes (MHC). Our study provides a set of potential immunodominant epitopes that could enable the generation of both antibody- and cell-mediated immunity. This could contribute to developing peptide vaccine-based adaptive immunotherapy against SARS-CoV-2 infections and prevent future pandemic outbreaks.

17.
Viral Immunol ; 32(5): 221-229, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094659

RESUMEN

Matrix (M) protein of Newcastle disease virus (NDV) is an abundant protein that can induce a robust humoral immune response. However, its antigenic epitopes remain unknown. In this study, we used a pepscan approach to map linear B cell immunodominant epitopes (IDEs) of M protein with NDV-specific chicken antisera. The six epitopes with the highest reactivity by peptide scanning were obtained as IDE candidates. Among them, aa71-85 and aa349-363 were identified by immunological assays with NDV-specific or IDE-specific antisera. The minimal antigenic epitopes of the two IDEs were further characterized as 77MIDDKP82 and 354HTLAKYNPFK363. Moreover, an amino acid sequence alignment and immunoblot analysis revealed the conservation of the two IDEs in the M protein of strains of different genotypes. These two IDEs of M protein could be genetically eliminated as negative markers in recombinant NDV for serologically differential diagnosis in the development of marker vaccines.


Asunto(s)
Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos Inmunodominantes , Virus de la Enfermedad de Newcastle/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pollos , Mapeo Epitopo , Genotipo , Ratones , Ratones Endogámicos BALB C , Mutagénesis Sitio-Dirigida , Virus de la Enfermedad de Newcastle/clasificación
18.
Vaccine ; 36(42): 6301-6306, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30217524

RESUMEN

HpaA is considered to be an effective protective antigen for vaccination against Helicobacter pylori (H. pylori) infection. Oral immunization with HpaA significantly decreases bacterial colonization in H. pylori infected mice. In this study, we investigated whether subcutaneous or intranasal immunization with HpaA could protect against H. pylori infection. Mice immunized subcutaneously with HpaA in Complete Freund's adjuvant, but not mice intranasally immunized with HpaA in CpG adjuvant acquired protection against H. pylori infection. However, intranasal immunization with immunodominant epitope peptides in CpG adjuvant protected mice against H. pylori infection, and immunodominant epitope peptides stimulated stronger Th1 responses and mediated more robust protection against H. pylori infection than subdominant ones. Our results suggest that the length of a candidate antigen is critical for particular vaccination routes, and that immunodominant epitope peptides are promising candidates for protection against H. pylori infection through nasal vaccination.


Asunto(s)
Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/prevención & control , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Epítopos Inmunodominantes/inmunología , Péptidos/administración & dosificación , Péptidos/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Citometría de Flujo , Inmunización/métodos , Ratones , Ratones Endogámicos BALB C , Vacunación/métodos
19.
Front Microbiol ; 9: 884, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875738

RESUMEN

Antigen-specific CD4+ T cells play an essential role in effective immunity against Helicobacter pylori (H. pylori) infection. Lpp20, a conserved lipoprotein of H. pylori, has been investigated as one of major protective antigens for vaccination strategies. Our previous study identified two H-2d-restricted CD4+ T cell epitopes within Lpp20 and an epitope vaccine based on these epitopes was constructed, which protected mice in prophylactic and therapeutic vaccination against H. pylori infection. Immunodominant CD4+ T cell response is an important feature of antiviral, antibacterial, and antitumor cellular immunity. However, while many immunodominant HLA-restricted CD4+ T cell epitopes of H. pylori protective antigens have been identified, immunodominant HLA-restricted Lpp20 CD4+ T cell epitope has not been elucidated. In this study, a systematic method was used to comprehensively evaluate the immunodominant Lpp20-specific CD4+ T cell response in H. pylori-infected patients. Using in vitro recombinant Lpp20 (rLpp20)-specific expanded T cell lines from H. pylori-infected subjects and 27 18mer overlapping synthetic peptides spanned the whole Lpp20 protein, we have shown that L55-72 and L79-96 harbored dominant epitopes for CD4+ T cell responses. Then the core sequence within these two 18mer dominant epitopes was screened by various extended or truncated 13mer peptides. The immunodominant epitope was mapped to L57-69 and L83-95. Various Epstein-Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCLs) with different HLA alleles were used as antigen presenting cell (APC) to present peptides to CD4+ T cells. The restriction molecules were determined by HLA class-antibody blocking. L57-69 was restricted by DRB1-1501 and L83-95 by DRB1-1602. The epitopes were recognized on autologous dendritic cells (DCs) loaded with rLpp20 but also those pulsed with whole cell lysates of H. pylori (HP-WCL), suggesting that these epitopes are naturally processed and presented by APC. CD4+ T cells were isolated from H. pylori-infected patients and stimulated with L57-69 and L83-95. These two epitopes were able to stimulate CD4+ T cell proliferation. This study may be of value for the future development of potential H. pylori vaccine.

20.
Viruses ; 10(5)2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724026

RESUMEN

(1) Background: Small ruminant lentiviruses (SRLV) persist in infected goats that mount a strong humoral immune response characterized by low neutralizing titers. In this study, we characterized the antibody response to SU5, a variable, immunodominant epitope of the envelope glycoprotein of SRLV. We tested the working hypothesis that the variability of SU5 reflects escape from neutralizing antibody. (2) Methods: Affinity purified anti-SU5 antibody were tested for their neutralizing activity to the homologous lentivirus. Virus culture supernatant—in native form or following sonication and filtration—was used to test the ability of free envelope glycoproteins to compete for binding in a SU5-peptide-ELISA. (3) Results: Anti-SU5 antibodies are not neutralizing, strongly suggesting that they do not bind intact viral particles. In contrast, shed envelope glycoproteins efficiently compete for binding in a SU5-ELISA, providing convincing evidence that the SU5 epitope is exposed only on shed envelope glycoproteins. (4) Conclusions: Our results show that the antibody engaging SU5 is not neutralizing and does not appear to bind to SU expressed at the surface of virus particles. We propose that SU5 is a potential decoy epitope exposed on shaded envelope glycoproteins, luring the humoral immune response in committing an original antigenic sin to a functionally irrelevant epitope.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Virus de la Artritis-Encefalitis Caprina/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Ensayo de Inmunoadsorción Enzimática , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/virología , Cabras/inmunología , Cabras/virología , Epítopos Inmunodominantes/genética , Infecciones por Lentivirus/inmunología , Infecciones por Lentivirus/veterinaria , Pruebas de Neutralización , Péptidos/inmunología , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda