Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 9.001
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2318157121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662549

RESUMEN

Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.

2.
FASEB J ; 38(10): e23700, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787606

RESUMEN

Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.


Asunto(s)
Aterosclerosis , Espectroscopía Dieléctrica , Animales , Conejos , Espectroscopía Dieléctrica/métodos , Masculino , Aterosclerosis/patología , Aterosclerosis/diagnóstico por imagen , Aorta Abdominal/patología , Aorta Abdominal/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones/métodos , Fenotipo , Modelos Animales de Enfermedad , Macrófagos/patología , Macrófagos/metabolismo
3.
FASEB J ; 38(18): e70069, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315853

RESUMEN

Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 µm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 µm versus >65 µm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 µm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Vasos Coronarios , Espectroscopía Dieléctrica , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/patología , Espectroscopía Dieléctrica/métodos , Masculino , Femenino , Placa Aterosclerótica/patología , Placa Aterosclerótica/diagnóstico por imagen , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Vasos Coronarios/patología , Aterosclerosis/patología , Factores de Riesgo
4.
Am J Respir Crit Care Med ; 209(11): 1328-1337, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346178

RESUMEN

Rationale: General anesthesia and mechanical ventilation have negative impacts on the respiratory system, causing heterogeneous distribution of lung aeration, but little is known about the ventilation patterns of postoperative patients and their association with clinical outcomes. Objectives: To clarify the phenotypes of ventilation patterns along a gravitational direction after surgery by using electrical impedance tomography (EIT) and to evaluate their association with postoperative pulmonary complications (PPCs) and other relevant clinical outcomes. Methods: Adult postoperative patients at high risk for PPCs, receiving mechanical ventilation on ICU admission (N = 128), were prospectively enrolled between November 18, 2021 and July 18, 2022. PPCs were prospectively scored until hospital discharge, and their association with phenotypes of ventilation patterns was studied. The secondary outcomes were the times to wean from mechanical ventilation and oxygen use and the length of ICU stay. Measurements and Main Results: Three phenotypes of ventilation patterns were revealed by EIT: phenotype 1 (32% [n = 41], a predominance of ventral ventilation), phenotype 2 (41% [n = 52], homogeneous ventilation), and phenotype 3 (27% [n = 35], a predominance of dorsal ventilation). The median PPC score was higher in phenotype 1 and phenotype 3 than in phenotype 2. The median time to wean from mechanical ventilation was longer in phenotype 1 versus phenotype 2. The median duration of ICU stay was longer in phenotype 1 versus phenotype 2. The median time to wean from oxygen use was longer in phenotype 1 and phenotype 3 than in phenotype 2. Conclusions: Inhomogeneous ventilation patterns revealed by EIT on ICU admission were associated with PPCs, delayed weaning from mechanical ventilation and oxygen use, and a longer ICU stay.


Asunto(s)
Impedancia Eléctrica , Complicaciones Posoperatorias , Respiración Artificial , Tomografía , Humanos , Masculino , Femenino , Impedancia Eléctrica/uso terapéutico , Persona de Mediana Edad , Anciano , Respiración Artificial/métodos , Estudios Prospectivos , Tomografía/métodos , Complicaciones Posoperatorias/fisiopatología , Tiempo de Internación/estadística & datos numéricos , Desconexión del Ventilador/métodos , Unidades de Cuidados Intensivos , Adulto
5.
Am J Respir Crit Care Med ; 209(6): 738-747, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38032260

RESUMEN

Rationale: The respiratory mechanisms of a successful transition of preterm infants after birth are largely unknown. Objectives: To describe intrapulmonary gas flows during different breathing patterns directly after birth. Methods: Analysis of electrical impedance tomography data from a previous randomized trial in preterm infants at 26-32 weeks gestational age. Electrical impedance tomography data for individual breaths were extracted, and lung volumes as well as ventilation distribution were calculated for end of inspiration, end of expiratory braking and/or holding maneuver, and end of expiration. Measurements and Main Results: Overall, 10,348 breaths from 33 infants were analyzed. We identified three distinct breath types within the first 10 minutes after birth: tidal breathing (44% of all breaths; sinusoidal breathing without expiratory disruption), braking (50%; expiratory brake with a short duration), and holding (6%; expiratory brake with a long duration). Only after holding breaths did end-expiratory lung volume increase: Median (interquartile range [IQR]) = 2.0 AU/kg (0.6 to 4.3), 0.0 (-1.0 to 1.1), and 0.0 (-1.1 to 0.4), respectively; P < 0.001]. This was mediated by intrathoracic air redistribution to the left and non-gravity-dependent parts of the lung through pendelluft gas flows during braking and/or holding maneuvers. Conclusions: Respiratory transition in preterm infants is characterized by unique breathing patterns. Holding breaths contribute to early lung aeration after birth in preterm infants. This is facilitated by air redistribution during braking/holding maneuvers through pendelluft flow, which may prevent lung liquid reflux in this highly adaptive situation. This study deciphers mechanisms for a successful fetal-to-neonatal transition and increases our pathophysiological understanding of this unique moment in life. Clinical trial registered with www.clinicaltrials.gov (NCT04315636).


Asunto(s)
Recien Nacido Prematuro , Respiración , Humanos , Recién Nacido , Espiración , Edad Gestacional , Recien Nacido Prematuro/fisiología , Pulmón , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38127779

RESUMEN

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X/métodos , Pulmón , Insuficiencia Respiratoria/diagnóstico por imagen , Insuficiencia Respiratoria/terapia , Tomografía/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia
7.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625005

RESUMEN

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Quimiocina CCL2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/orina , Nefropatías Diabéticas/diagnóstico , Técnicas Biosensibles/métodos , Quimiocina CCL2/orina , Biomarcadores/orina , Límite de Detección , Técnicas Electroquímicas/métodos
8.
Nano Lett ; 24(7): 2234-2241, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38320294

RESUMEN

Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.


Asunto(s)
Espectroscopía Dieléctrica , Escherichia coli , Neuronas/fisiología , Bacterias , Biopelículas
9.
Nano Lett ; 24(30): 9283-9288, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39023006

RESUMEN

The electrostatic environment around nanoscale molecular junctions modulates charge transport; solvents alter this environment. Methods to directly probe solvent effects require correlating measurements of the local electrostatic environment with charge transport across the metal-molecule-metal junction. Here, we measure the conductance and current-voltage characteristics of molecular wires using a scanning tunneling microscope-break junction (STM-BJ) setup in two commonly used solvents. Our results show that the solvent environment induces shifts in molecular conductance, which we quantify, but more importantly we find that the solvent also impacts the magnitude of current rectification in molecular junctions. By incorporating electrochemical impedance spectroscopy into the STM-BJ setup, we measure the capacitance of the dipole layer formed at the metal-solvent interface and show that rectification can be correlated with solvent capacitance. These results provide a method of quantifying the impact of the solvent environment and a path toward improved environmental control of molecular devices.

10.
Nano Lett ; 24(30): 9147-9154, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028759

RESUMEN

Photoenhanced batteries, where light improves the electrochemical performance of batteries, have gained much interest. Recent reports suggest that light-to-heat conversion can also play an important role. In this work, we study Prussian blue analogues (PBAs), which are known to have a high photothermal heating efficiency and can be used as cathodes for Li-ion batteries. PBAs were synthesized directly on a carbon collector electrode and tested under different thermally controlled conditions to show the effect of photothermal heating on battery performance. Our PBA electrodes reach temperatures that are 14% higher than reference electrodes using a blue LED, and a capacity enhancement of 38% was achieved at a current density of 1600 mA g-1. Additionally, these batteries show excellent cycling stability with a capacity retention of 96.6% in dark conditions and 94.8% in light over 100 cycles. Overall, this work shows new insights into the effects leading to improved battery performance in photobatteries.

11.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620157

RESUMEN

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Asunto(s)
Sueño REM , Sueño , Humanos , Impedancia Eléctrica , Sueño/fisiología , Sueño REM/fisiología , Encéfalo/fisiología , Vigilia/fisiología , Hipocampo
12.
Circulation ; 148(23): 1847-1856, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37952192

RESUMEN

BACKGROUND: Few studies have measured ventilation during early cardiopulmonary resuscitation (CPR) before advanced airway placement. Resuscitation guidelines recommend pauses after every 30 chest compressions to deliver ventilations. The effectiveness of bag-valve-mask ventilation delivered during the pause in chest compressions is unknown. We sought to determine: (1) the incidence of lung inflation with bag-valve-mask ventilation during 30:2 CPR; and (2) the association of ventilation with outcomes after out-of-hospital cardiac arrest. METHODS: We studied patients with out-of-hospital cardiac arrest from 6 sites of the Resuscitation Outcomes Consortium CCC study (Trial of Continuous Compressions versus Standard CPR in Patients with Out-of-Hospital Cardiac Arrest). We analyzed patients assigned to the 30:2 CPR arm with ≥2 minutes of thoracic bioimpedance signal recorded with a cardiac defibrillator/monitor. Detectable ventilation waveforms were defined as having a bioimpedance amplitude ≥0.5 Ω (corresponding to ≥250 mL VT) and a duration ≥1 s. We defined a chest compression pause as a 3- to 15-s break in chest compressions. We compared the incidence of ventilation and outcomes in 2 groups: patients with ventilation waveforms in <50% of pauses (group 1) versus those with waveforms in ≥50% of pauses (group 2). RESULTS: Among 1976 patients, the mean age was 65 years; 66% were male. From the start of chest compressions until advanced airway placement, mean±SD duration of 30:2 CPR was 9.8±4.9 minutes. During this period, we identified 26 861 pauses in chest compressions; 60% of patients had ventilation waveforms in <50% of pauses (group 1, n=1177), and 40% had waveforms in ≥50% of pauses (group 2, n=799). Group 1 had a median of 12 pauses and 2 ventilations per patient versus group 2, which had 12 pauses and 12 ventilations per patient. Group 2 had higher rates of prehospital return of spontaneous circulation (40.7% versus 25.2%; P<0.0001), survival to hospital discharge (13.5% versus 4.1%; P<0.0001), and survival with favorable neurological outcome (10.6% versus 2.4%; P<0.0001). These associations persisted after adjustment for confounders. CONCLUSIONS: In this study, lung inflation occurred infrequently with bag-valve-mask ventilation during 30:2 CPR. Lung inflation in ≥50% of pauses was associated with improved return of spontaneous circulation, survival, and survival with favorable neurological outcome.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco Extrahospitalario , Humanos , Masculino , Anciano , Femenino , Paro Cardíaco Extrahospitalario/terapia , Respiración Artificial/efectos adversos , Presión , Tórax
13.
Neuroimage ; 286: 120517, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211705

RESUMEN

Recently, Clarke et al. published a study using spinal cord susceptibility weighted imaging in multiple sclerosis patients at 7T. They discovered dilated intradural extramedullary veins surrounding the cord. The purpose of this commentary is to point out some recent research by our group, which suggests this dilatation also occurs in the bridging cortical veins surrounding the brain. The dilatation indicates a focal elevation in the venous pressure secondary to impedance mismatching. Due to the shared outflow geometry, dilatation of the outflow veins will obstruct the glymphatic pathway of the spinal cord altering the immune response.


Asunto(s)
Sistema Glinfático , Esclerosis Múltiple , Humanos , Venas , Encéfalo/irrigación sanguínea , Médula Espinal , Imagen por Resonancia Magnética/métodos
14.
J Neurophysiol ; 132(1): 308-315, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865216

RESUMEN

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.


Asunto(s)
Callithrix , Neuronas , Silicio , Animales , Silicio/farmacología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Impedancia Eléctrica , Electrodos Implantados , Encéfalo/fisiología , Encéfalo/efectos de los fármacos , Polímeros/farmacología , Masculino , Neurofisiología/instrumentación , Neurofisiología/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Microelectrodos
15.
J Neurophysiol ; 131(1): 1-15, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820017

RESUMEN

Humans substantially outperform robotic systems in tasks that require physical interaction, despite seemingly inferior muscle bandwidth and slow neural information transmission. The control strategies that enable this performance remain poorly understood. To bridge that gap, this study examined kinematically constrained motion as an intermediate step between the widely studied unconstrained motions and sparsely studied physical interactions. Subjects turned a horizontal planar crank in two directions (clockwise and counterclockwise) at three constant target speeds (fast, medium, and very slow) as instructed via visual display. With the hand constrained to move in a circle, nonzero forces against the constraint were measured. This experiment exposed two observations that could not result from mechanics alone but may be attributed to neural control composed of dynamic primitives. A plausible mathematical model of interactive dynamics (mechanical impedance) was assumed and used to "subtract" peripheral neuromechanics. This method revealed a summary of the underlying neural control in terms of motion, a zero-force trajectory. The estimated zero-force trajectories were approximately elliptical and their orientation differed significantly with turning direction; that is consistent with control using oscillations to generate an elliptical zero-force trajectory. However, for periods longer than 2-5 s, motion can no longer be perceived or executed as periodic. Instead, it decomposes into a sequence of submovements, manifesting as increased variability. These quantifiable performance limitations support the hypothesis that humans simplify this constrained-motion task by exploiting at least three primitive dynamic actions: oscillations, submovements, and mechanical impedance.NEW & NOTEWORTHY Control using primitive dynamic actions may explain why human performance is superior to robots despite seemingly inferior "wetware"; however, this also implies limitations. For a crank-turning task, this work quantified two such informative limitations. Force was exerted even though it produced no mechanical work, the underlying zero-force trajectory was roughly elliptical, and its orientation differed with turning direction, evidence of oscillatory control. At slow speeds, speed variability increased substantially, indicating intermittent control via submovements.


Asunto(s)
Mano , Movimiento , Humanos , Mano/fisiología , Movimiento (Física) , Movimiento/fisiología , Fenómenos Biomecánicos
16.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819383

RESUMEN

Nitric oxide (NO) inhalation improves pulmonary hemodynamics in participants with pulmonary arterial hypertension (PAH). Although it can reduce pulmonary vascular resistance (PVR) in PAH, its impact on the dynamic mechanics of pulmonary arteries and its potential difference between control and participants with PAH remain unclear. PA impedance provides a comprehensive description of PA mechanics. With an arterial model, PA impedance can be parameterized into peripheral pulmonary resistance (Rp), arterial compliance (Cp), characteristic impedance of the proximal arteries (Zc), and transmission time from the main PA to the reflection site. This study investigated the effects of inhaled NO on PA impedance and its associated parameters in control and monocrotaline-induced pulmonary arterial hypertension (MCT-PAH) male rats (6/group). Measurements were obtained at baseline and during NO inhalation at 40 and 80 ppm. In both groups, NO inhalation decreased PVR and increased the left atrial pressure. Notably, its impact on PA impedance was frequency dependent, as revealed by reduced PA impedance modulus in the low-frequency range below 10 Hz, with little effect on the high-frequency range. Furthermore, NO inhalation attenuated Rp, increased Cp, and prolonged transmission time without affecting Zc. It reduced Rp more pronouncedly in MCT-PAH rats, whereas it increased Cp and delayed transmission time more effectively in control rats. In conclusion, the therapeutic effects of inhaled NO on PA impedance were frequency dependent and may differ between the control and MCT-PAH groups, suggesting that the effect on the mechanics differs depending on the pathological state.NEW & NOTEWORTHY Nitric oxide inhalation decreased pulmonary arterial impedance in the low-frequency range (<10 Hz) with little impact on the high-frequency range. It reduced peripheral pulmonary resistance more pronouncedly in pulmonary hypertension rats, whereas it increased arterial compliance and transmission time in control rats. Its effect on the mechanics of the pulmonary arteries may differ depending on the pathological status.


Asunto(s)
Óxido Nítrico , Arteria Pulmonar , Resistencia Vascular , Animales , Masculino , Óxido Nítrico/metabolismo , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/efectos de los fármacos , Administración por Inhalación , Resistencia Vascular/efectos de los fármacos , Monocrotalina , Ratas , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Presión Arterial/efectos de los fármacos
17.
J Comput Chem ; 45(16): 1380-1389, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407482

RESUMEN

Electrical equivalent circuits are a widely applied tool with which electrical processes can be rationalized. There is a wide-ranging selection of fields from bioelectrochemistry to batteries to fuel cells making use of this tool. Enabling meta-analysis on the similarities and differences in the used circuits will help to identify commonly used circuits and aid in evaluating the underlying physics. We present a method and an implementation that enables the conversion of circuits included in scientific publications into a machine-readable form for generating machine learning datasets or circuit simulations.

18.
Small ; 20(25): e2310221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396158

RESUMEN

Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.


Asunto(s)
Impedancia Eléctrica , Electroporación , Electroporación/métodos , Porosidad , Animales , Humanos , Supervivencia Celular
19.
Small ; : e2403689, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128133

RESUMEN

The excellent performance of electromagnetic wave absorbers primarily depends on the coordination among components and the rational design of the structure. In this study, a series of porous fibers with carbon nanotubes uniformly distributed in the shape of pine leaves are prepared through electrospinning technique, one-pot hydrothermal synthesis, and high-temperature catalysis method. The impedance matching of the nanofibers with a porous structure is optimized by incorporating melamine into the spinning solution, as it undergoes gas decomposition during high-temperature calcination. Moreover, the electronic structure can be modulated by controlling the NH4F content in the hydrothermal synthesis process. Ultimately, the Ni/Co/CrN/CNTs-CF specimen (P3C NiCrN12) exhibited superior performance, while achieving a minimum reflection loss (RLmin) of -56.18 dB at a thickness of 2.2 mm and a maximum absorption bandwidth (EABmax) of 5.76 GHz at a thickness of 2.1 mm. This study presents an innovative approach to fabricating lightweight, thin materials with exceptional absorption properties and wide bandwidth by optimizing the three key factors influencing electromagnetic wave absorption performance.

20.
Small ; : e2404207, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240059

RESUMEN

Highly efficient electromagnetic wave (EMW)-absorbing multicomposites can be fabricated by constructing particular structures using suitable components. Expanded graphite (EG) has a 3D, low-density porous structure; however, it suffers from poor impedance matching and EMW absorption properties. Based on this information, in the present study, NiCo2S4 components with different morphologies are successfully loaded onto a 3D EG surface using a facile microwave solvothermal method to achieve a synergistic effect between the different components. The NiCo2S4 content is adjusted to alter the compositional morphology and electromagnetic parameters of the composites to achieve impedance-matching and obtain excellent EMW absorption properties. The heterogeneous interface between EG and NiCo2S4 induces an inhomogeneous spatial charge distribution and enhances interfacial polarization. The defects in the material and oxygen-containing groups induce dipole polarization, which enhances the polarization-relaxation process of the composites. The 3D porous heterostructure of the "Fibonacci cauliflower"-shaped NiCo2S4/EG composites results in an optimal reflection loss of -64.93 dB at a filler rate of only 14 wt.%. Analysis of the synergistic conduction loss and polarization loss mechanisms in carbon-based materials with heterogeneous interfaces has led to the development of excellent EMW absorption materials.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda