Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Waste Manag Res ; : 734242X241241602, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563513

RESUMEN

The development of the solar market has been fast in the past decades, and the number of photovoltaic module installations is large. The photovoltaic modules have a lifetime of about 25 years and need recovery after that. The aluminium-back surface field (Al-BSF) module is the first kind of large-scale installed module and will come to its end of life in the next few years. The recycling of silicon material in the Al-BSF module is investigated in this work. The components of the module are separated, and the silicon material in the module is collected and then purified by (aluminium-silicon) Al-Si solvent refining for reuse. It is found that Al-Si solvent refining removed key impurity elements, namely boron and phosphorus, in the collected silicon. Kinetics has a great effect on boron and phosphorus removal, and boron and phosphorus contents in purified silicon decrease with decreasing cooling rate. The boron and phosphorus contents in silicon are lowered to 0.28 and 0.03 ppmw, respectively, after two times of Al-Si solvent refining with the cooling rate of 5.55 * 10-4 K second-1, and it meets the requirement of solar-grade silicon.

2.
Environ Monit Assess ; 195(2): 321, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36689041

RESUMEN

Traditional freshwater supplies have been over-abstracted in the current global problem of water scarcity. Through the analysis of complex experimental and real-time data, to improve the activity of water and wastewater treatment (WWT) systems, an artificial neural network (ANN), a computational model inspired by the human brain, and its variants were created. This review paper focuses on recent trends and advances in modeling and simulating different water and wastewater systems using ANN. This study uses ANN in watershed management, impurity removal from wastewater, and wastewater treatment plants. According to the literature review, ANN can predict nonlinear, linear, and complex systems with high accuracy and well control. Finally, the limitations and future scope of ANNs were discussed. ANN proved itself in the prediction of various water and WWT processes. Still, implementation has practical challenges, which include a lack of data availability, poorly built models, timely updates in developed models, and low repeatability. The use of a proper toolbox, faster computing power, and proper domain knowledge makes the practical implementation of ANN successful. As a result, ANN can build a solid foundation for attracting and motivating investigators to work in this region in the forthcoming.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Agua , Monitoreo del Ambiente , Redes Neurales de la Computación
3.
J Environ Manage ; 279: 111618, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189420

RESUMEN

The phosphate oxygen isotope (δ18OP) ratio has been proven to be an effective tool to trace the sources and biogeochemical cycles of phosphorus (P) in aquatic ecosystems. However, the enrichment of phosphate (PO4) and the removal of impurities are quite complex and easy to cause PO4 loss in current δ18OP analytical methods. Moreover, the δ18OP value obtained by the commonly-used instantaneous sampling method is more of the instantaneous information of P, which is accidental or uncertain for accurate identification of the P source. In this study, a new method of in situ enrichment, elution, and purification of PO4 (ISEEP) was developed for δ18OP analysis in waters. This method utilized a PO4 binding phase (Zr-Oxide gel) to selectively in situ adsorb PO4 in water and exhibited an adsorption capacity per unit area of up to 789.3 µg P/cm2. The PO4 on the gel was eluted easily with a 1 M NaOH solution. More than 99.7% of the common anions, cations, and dissolved organic matter (DOM), as well as more than 90% of the trace elements were removed synchronously after adsorption and elution of PO4. The recovery rate of PO4 in the whole procedure was as high as 92.8%. The XRD and SEM examinations showed that the ISEEP can obtain high-purity Ag3PO4 solid for the δ18OP measurement. The reliability of the ISEEP method is confirmed by the measured δ18OP value and standard deviation of parallel samples from different types of natural waters obtained by both the ISEEP and the current popular McLaughlin (2004) method. It provides a good prospect of this new method for tracing the P sources and their biogeochemical cycling in aquatic ecosystems.


Asunto(s)
Ecosistema , Fosfatos , Isótopos de Oxígeno/análisis , Reproducibilidad de los Resultados , Agua
4.
Molecules ; 25(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326160

RESUMEN

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.


Asunto(s)
Aminofenoles/química , Contaminación de Medicamentos , Compuestos Orgánicos/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/normas , Sales (Química)/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Preparaciones Farmacéuticas/análisis , Polvos
5.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730874

RESUMEN

Phosphogypsum (PG), a byproduct during the phosphoric acid production process, also known as the wet process, contains complex and diverse impurities, resulting in low utilization and considerable accumulation. This leads to a massive waste of land resources and a series of environmental pollution problems. Given the current urgent ecological and environmental situation, developing impurity removal processes with low energy consumption and high efficiency, exploring valuable resource recovery, preparing high value-added PG products, and broadening the comprehensive utilization ways of PG are significant strategies to promote the sustainable consumption of PG and sustainable development of the phosphorus chemical industry. This review comprehensively summarizes the advantages and disadvantages of existing PG impurity removal and utilization technologies and probes into the future development direction, which provides references and ideas for subsequent PG research.

6.
Biotechnol Bioeng ; 110(11): 2928-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23740533

RESUMEN

Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.


Asunto(s)
Anticuerpos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Fraccionamiento Químico/métodos , Filtración/métodos , Floculación , Tecnología Farmacéutica/métodos , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/aislamiento & purificación
7.
Ultrason Sonochem ; 95: 106415, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098313

RESUMEN

This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.

8.
Talanta ; 259: 124502, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027935

RESUMEN

Ag dendrites have recently been widely reported due to their excellent surface-enhanced Raman scattering (SERS) properties. However, prepared pristine Ag dendrites are usually contaminated by organic impurities, which has a huge negative impact on their Raman detection and greatly limits their practical applications. In this paper, we reported a facile strategy to obtain clean Ag dendrites by high temperature decomposition of organic impurities. With the assistance of ultra-thin coating via atomic layer deposition (ALD), the nanostructure of Ag dendrites can be retained at high temperature. SERS activity can be recovered after etching ALD coating. Chemical composition tests indicate that the organic impurities can be effectively removed. As a result, the clean Ag dendrites can obtain more clearly discernible Raman peaks and lower limits of detection than the pristine Ag dendrites. Furthermore, it was demonstrated that this strategy is also applicable to clean other substrates, such as gold nanoparticles. Therefore, high temperature annealing with the help of ALD sacrifice coating is a promising and non-destructive strategy to clean the SERS substrates.

9.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202467

RESUMEN

Ti-bearing blast furnace slag (TBFS) can be converted to impurity bearing TiOSO4 solution for TiO2 pigment production. However, the H2TiO3 (MTA) hydrolyzed from the solution has too high Fe/V impurity to meet the standard for TiO2 pigment. In this study, we found that Fe3+ and V3+ were easily hydrolyzed and entered the MTA lattice, and hence could not be removed by washing. Furthermore, Fe/V was hard to co-remove by the traditional reduction method. Therefore, the Fe/V non-hydrolysis condition (Ti3+ = 0.01 M, F = 3.0, T = 130 °C; Ti3+ = 0.01 M, F = 3.5, T = 150 °C) was determined by thermodynamic calculations. However, at these conditions, the Ti hydrolysis ratio was low or the reaction time was long. Therefore, a new two-step hydrothermal hydrolysis process was proposed. Step 1 (130 °C, 2 h) ensured the non-hydrolysis of V3+, and Ti was partially hydrolyzed to increase the H2SO4 concentration. Step 2 (150 °C, 2 h) ensured a high Ti hydrolysis ratio (>0.95) and short total reaction time (4-6 h). Finally, a high-purity MTA was obtained (Fe = 21 ppm, V = 145 ppm). These results provide new insights into the control of the hydrolysis of impurity ions in solutions and help to optimize the process of TiO2 pigment preparation from TBFS.

10.
Bioresour Bioprocess ; 10(1): 93, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38647984

RESUMEN

Bispecific antibody (bsAb), a novel therapeutic modality, provides excellent treatment efficacy, yet poses numerous challenges to downstream process development, which are mainly due to the intricate diversity of bsAb structures and impurity profiles. Ceramic hydroxyapatite (CHT), a mixed-mode medium, allows proteins to interact with its calcium sites (C-sites) through metal affinity and/or its phosphate sites (P-sites) through cation exchange interactions. This dual-binding capability potentially offers unique bind and elute behaviours for different proteins of interest, resulting in optimal product purity when suitable elution conditions are employed. In this study, the effectiveness of CHT as a polishing step for bsAb purification was investigated across three model molecules and benchmarked against the traditional cation exchange chromatography (CEX). For both asymmetric and symmetric IgG-like bsAb post Protein A eluates, at least 97% product purity was achieved after CHT polishing. CHT delivered a superior aggregate clearance to CEX, resulting in low high molecular weight (HMW) impurities (0.5%) and low process-related impurities in the product pools. Moreover, CHT significantly mitigated "chromatography-induced aggregation" whereas eightfold more HMW was generated by CEX. This study illustrated the developability of CHT in effectively eliminating low molecular weight (LMW) impurities through post-load-wash (PLW) optimization, resulting in an additional reduction of up to 48% in LMW impurities. A mechanistic explanation regarding the performance of impurity removal and mitigation of the chromatography-induced aggregation by CHT was proposed, illustrating unique CHT capability is potentially driven by C-site cooperation, of which effectiveness could depend on the bsAb composition and size.

11.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295669

RESUMEN

The performance of stainless steel membranes with pore sizes of 100 and 20 nm in clarifying limed sugarcane juice was investigated under different operating conditions. An increase in transmembrane pressure (TMP) for the 20 nm membrane from 2 to 5 bar led to an increase in the average flux from 146.6 Lm-2 h-1 to 187.8 Lm-2 h-1 (approximately 9 h). The increase in crossflow velocity from 2 to 5 m/s led to an increase in the average flux from 111.9 Lm-2 h-1 to 158.1 Lm-2 h-1. The increase in temperature from 70 °C to 90 °C caused an increase in the average flux from 132.8 Lm-2 h-1 to 148.6 Lm-2 h-1. Simultaneously, the test produced a high-quality filtered juice with an average of 1.26 units of purity rise. The purity increased with time, and a 99.99% reduction in turbidity and an average 29.3% reduction in colour were observed. In addition, four classic filtration mathematical models and scanning electron microscopy (SEM) analyses suggested that cake formation is the main mechanism for flux decline. Fourier transform infrared (FTIR) spectrometry and energy-dispersive X-ray (EDX) spectrometry indicated that organic fouling is the main foulant. This study demonstrates the potential of stainless steel membranes as filters for the clarification of raw sugarcane juice.

12.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080057

RESUMEN

As phosphogypsum constitutes a large amount of solid waste material, its purification treatment and comprehensive utilization have close connection with economic development and ecological environmental protection. For the moment, the storage quantity of phosphogypsum is still rising as a result of the increasing phosphate fertilizer production to meet the food demand in China. This paper summarizes the generation process, impurity removal treatment (physical method, chemical method, heat method), high-value utilization (nanometer calcium sulfate whisker, nanometer calcium carbonate) of phosphogypsum material and some existing problems. It puts forward some views on the challenges in this field and the direction of future development. It is hoped that the investigation and summary in this paper could supply some significant information for the impurity removal and high-value utilization of phosphogypsum material as a contribution to sustainability.

13.
Waste Manag ; 149: 53-59, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35714436

RESUMEN

Pyrolysis is a technical means for waste tires recycling, which can promote the enrichment of carbon black and facilitate the subsequent recovery. However, carbon black particles aggregated and the inorganic impurities tended to be enriched in pyrolytic char during the waste tire pyrolysis process, which is not conducive to the substitution of commercial carbon black by pyrolytic char. In the present study, a novel method using molten salts thermal treatment was proposed for the impurities removal from pyrolytic chars with different characteristics. In addition, the proper thermal treatment conditions were further estimated to obtain better performance for the physical-chemical properties improvement of pyrolytic char. Six kinds of char samples were chosen to conduct molten salts thermal treatment (MSTT) experiments at 350, 400, and 450 °C. The experimental results show that MSTT can effectively remove the impurities of different pyrolytic chars, and the most optimum reaction conditions are at 400 °C, 2 h of reaction time, and molten salt/char ratio of 10:1. In addition, after MSTT, the pyrolytic char was depolymerized, and the average particle size reduced from 36.63 µm to 19.08 µm, the specific surface area increased from 49 m2/g to 73 m2/g. At the same time, the graphite carbon content of the pyrolytic char increased from 24.41% to 70.90%, and the hydroxyl content on the pyrolytic char surface increased significantly. In summary, the physical-chemical properties of waste tire pyrolytic char were improved by MSTT, which is close to the carbon black N550 level.


Asunto(s)
Pirólisis , Hollín , Carbono/química , Reciclaje , Sales (Química)
14.
Sci Technol Adv Mater ; 12(3): 035003, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27877407

RESUMEN

In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.

15.
Biotechnol Prog ; 37(1): e3086, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33016571

RESUMEN

Beta-glucans are polysaccharides of D-glucose monomers linked by (1-3) beta-glycosidic bonds, are found to have a potential immunogenicity risk in biotherapeutic products, and are labeled as process contaminants. A common source of beta-glucans is from the cellulose found in traditional depth filter media. Typically, beta-glucan impurities that leach into the product from the primary clarification depth filters can be removed by the subsequent bind-and-elute affinity chromatography capture step. Beta-glucans can also be removed by a bind-and-elute cation exchange chromatography step, which is useful for removing beta-glucans introduced by a post-Protein A depth filtration step. However, the increasing prevalence of flowthrough polishing chromatography poses a challenge for beta-glucan removal due to the lack of any bind-and-elute chromatography steps after the post-Protein A depth filter. In this work, a depth filter flush strategy was developed to control beta-glucan leaching into the product pool. Different loading conditions for the depth filtration and subsequent chromatography steps were evaluated to determine the robustness of the optimized flush strategy. Carry through runs demonstrated greater than two-fold reduction in beta-glucan levels using the optimized wash as compared to standard filter flush conditions.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Filtración/métodos , Inmunoglobulina G/inmunología , Membranas Artificiales , beta-Glucanos/aislamiento & purificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Humanos
16.
Waste Manag ; 119: 22-29, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039978

RESUMEN

Supergravity technology is an efficient method for the separation of trace elements from Al-Mg alloys made of their scraps. This study investigated the enrichment and separation behavior of impurities from Al-Mg alloy using supergravity technology under various conditions. After supergravity enrichment, nonmetallic inclusions and precipitated intermetallic compounds were concentrated at the bottom of the samples, and the enrichment degree positively correlated with the gravity coefficient. High-purity Al-Mg alloys was obtained with efficient impurity removal from the alloy melt of the scraps by filtration in supergravity fields. Improving the gravity coefficient benefited the recoveries of the Al and Mg but had little influence on the purity of the obtained Al-Mg alloy. Although the recoveries of the Al and Mg increased slightly with increasing the separation temperature, the removal rates of the metallic impurities were relatively low at elevated temperatures. At the temperature of 500 °C, gravity coefficient of 600, and separation time of 1 min, 91.6% and 90.1% of Al and Mg were recovered, respectively. Their corresponding mass fractions in the filtered Al-Mg alloy were 99.2 wt%. An amplified experimental centrifugal separation apparatus was also designed for purifying the alloys on an engineering scale. The results indicate that supergravity technology is feasible on an industrial scale and that it can be potentially employed as a separation and purification process.


Asunto(s)
Aleaciones , Tecnología , Temperatura
17.
Waste Manag ; 106: 12-20, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179417

RESUMEN

Impurities in biowaste, such as plastics, glass, metals and inert material, negatively impact the operation of anaerobic digestion plants and compost quality, and have to be removed prior to the anaerobic digestion process. Different mechanical pretreatments are available for this purpose. However, data on the removal efficiencies of pretreatment systems for different types of biowaste and for different kinds of impurities are still scarce. This study aims to determine the efficiencies for impurity removal of four biowaste pretreatment plants (BTPs) at real scale - (1) drum-screen + shredder + piston press; (2) shredder + piston press + screw press; (3) separation-mill; and (4) pulper + drum-screen. BTP 1 treats mixed food and garden wastes, while BTP 2, 3 and 4 treat mostly food waste. The efficiency of the pretreatment systems was influenced by the type of pretreated biowaste. The recovery of organics by the press was more efficient when pretreating food waste (BTP 2, 93%) than for treating mixed food and garden wastes (BTP 1, 77%). BTP 3 presented the highest recovery of biogas (up to 98%), but also the highest transfer of inert particles to the substrate. On the contrary, BTP 4 was the most efficient for the removal of inert particles; however, this system also presented 18% loss of biogas potential.


Asunto(s)
Eliminación de Residuos , Anaerobiosis , Biocombustibles , Alimentos
18.
Materials (Basel) ; 7(8): 5543-5553, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-28788144

RESUMEN

The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn't significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling.

19.
J Chromatogr A ; 1323: 49-56, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24280613

RESUMEN

A standardised separation methodology was developed for the purification of crude reaction mixtures containing triphenylphosphine oxide (TPPO) using high performance countercurrent chromatography (HPCCC). A solvent system consisting of hexane/ethyl acetate/methanol/water (5:6:5:6) was used in 1 column volume elution-extrusion mode. The HPCCC methodology was compared with classical RP HPLC purification using a set of 12 representative Mitsunobu reaction mixtures. HPCCC was seen to yield a 65% increase in the average recovery of the target component whilst providing similar final target purities to those obtained by HPLC. By eliminating the need for method development for individual samples, the HPCCC methodology described within provides a simple and efficient means for the purification of the entire family of TPPO-containing reaction products.


Asunto(s)
Distribución en Contracorriente/métodos , Compuestos Organofosforados/química , Compuestos Organofosforados/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos/prevención & control , Solventes/química
20.
Artículo en Zh | WPRIM | ID: wpr-855060

RESUMEN

Objective: To explore the effect of ultrafiltration technology in the preparation of Xiangdan Injection on transmittance and impurity removal rates of protocatechuic aldehyde (PA) and sodium danshensu (SD), to evaluate its applicability, and to optimize the ultrafiltration technology. Methods: Taking the solution temperature, pH value, intercept relative molecular weight of ultrafiltration membrane, membrane import and export pressure difference of ultrafiltration membrane as influence factors, the process parameters of the ultrafiltration were optimized by detecting the contents and solid contents of PA and SD before and after the ultrafiltration. Results: The three factors of temperature, pH value, and import and export pressure difference have no significant influence on the transmittance of PA and SD, and the removal rate of impurity. The intercept relative molecular weight of ultrafiltration membrane has the significant influence (P < 0.01). Conclusion: The optimized ultrafiltration conditions are feasible for the preparation of Xiangdan Injection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda