Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38544212

RESUMEN

With the development of the mobile network communication industry, 5G has been widely used in the consumer market, and the application of 5G technology for indoor positioning has emerged. Like most indoor positioning techniques, the propagation of 5G signals in indoor spaces is affected by noise, multipath propagation interference, installation errors, and other factors, leading to errors in 5G indoor positioning. This paper aims to address these issues by first constructing a 5G indoor positioning dataset and analyzing the characteristics of 5G positioning errors. Subsequently, we propose a 5G Positioning Error Correction Neural Network (5G-PECNN) based on neural networks. This network employs a multi-level fusion network structure designed to adapt to the error characteristics of 5G through adaptive gradient descent. Experimental validation demonstrates that the algorithm proposed in this paper achieves superior error correction within the error region, significantly outperforming traditional neural networks.

2.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123862

RESUMEN

This study presents a novel approach to indoor positioning leveraging radio frequency identification (RFID) technology based on received signal strength indication (RSSI). The proposed methodology integrates Gaussian Kalman filtering for effective signal preprocessing and a time-distributed auto encoder-gated recurrent unit (TAE-GRU) model for precise location prediction. Addressing the prevalent challenges of low accuracy and extended localization times in current systems, the proposed method significantly enhances the preprocessing of RSSI data and effectively captures the temporal relationships inherent in the data. Experimental validation demonstrates that the proposed approach achieves a 75.9% improvement in localization accuracy over simple neural network methods and markedly enhances the speed of localization, thereby proving its practical applicability in real-world indoor localization scenarios.

3.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793902

RESUMEN

The development of the GPS (Global Positioning System) and related advances have made it possible to conceive of an outdoor positioning system with great accuracy; however, for indoor positioning, more efficient, reliable, and cost-effective technology is required. There are a variety of techniques utilized for indoor positioning, such as those that are Wi-Fi, Bluetooth, infrared, ultrasound, magnetic, and visual-marker-based. This work aims to design an accurate position estimation algorithm by combining raw distance data from ultrasonic sensors (Marvelmind Beacon) and acceleration data from an inertial measurement unit (IMU), utilizing the extended Kalman filter (EKF) with UDU factorization (expressed as the product of a triangular, a diagonal, and the transpose of the triangular matrix) approach. Initially, a position estimate is calculated through the use of a recursive least squares (RLS) method with a trilateration algorithm, utilizing raw distance data. This solution is then combined with acceleration data collected from the Marvelmind sensor, resulting in a position solution akin to that of the GPS. The data were initially collected via the ROS (Robot Operating System) platform and then via the Pixhawk development card, with tests conducted using a combination of four fixed and one moving Marvelmind sensors, as well as three fixed and one moving sensors. The designed algorithm is found to produce accurate results for position estimation, and is subsequently implemented on an embedded development card (Pixhawk). The tests showed that the designed algorithm gives accurate results with centimeter precision. Furthermore, test results have shown that the UDU-EKF structure integrated into the embedded system is faster than the classical EKF.

4.
Sensors (Basel) ; 24(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794021

RESUMEN

Indoor distance measurement technology utilizing Zigbee's Received Signal Strength Indication (RSSI) offers cost-effective and energy-efficient advantages, making it widely adopted for indoor distance measurement applications. However, challenges such as multipath effects, signal attenuation, and signal blockage often degrade the accuracy of distance measurements. Addressing these issues, this study proposes a combined filtering approach integrating Kalman filtering, Dixon's Q-test, Gaussian filtering, and mean filtering. Initially, the method evaluates Zigbee's transmission power, channel, and other parameters, analyzing their impact on RSSI values. Subsequently, it fits a signal propagation loss model based on actual measured data to understand the filtering algorithm's effect on distance measurement error. Experimental results demonstrate that the proposed method effectively improves the conversion relationship between RSSI and distance. The average distance measurement error, approximately 0.46 m, substantially outperforms errors derived from raw RSSI data. Consequently, this method offers enhanced distance measurement accuracy, making it particularly suitable for indoor positioning applications.

5.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894162

RESUMEN

Composite indoor human activity recognition is very important in elderly health monitoring and is more difficult than identifying individual human movements. This article proposes a sensor-based human indoor activity recognition method that integrates indoor positioning. Convolutional neural networks are used to extract spatial information contained in geomagnetic sensors and ambient light sensors, while transform encoders are used to extract temporal motion features collected by gyroscopes and accelerometers. We established an indoor activity recognition model with a multimodal feature fusion structure. In order to explore the possibility of using only smartphones to complete the above tasks, we collected and established a multisensor indoor activity dataset. Extensive experiments verified the effectiveness of the proposed method. Compared with algorithms that do not consider the location information, our method has a 13.65% improvement in recognition accuracy.


Asunto(s)
Acelerometría , Algoritmos , Actividades Humanas , Redes Neurales de la Computación , Teléfono Inteligente , Humanos , Acelerometría/instrumentación , Acelerometría/métodos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
6.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610300

RESUMEN

Variations in Global Positioning Systems (GPSs) have been used for tracking users' locations. However, when location tracking is needed for an indoor space, such as a house or building, then an alternative means of precise position tracking may be required because GPS signals can be severely attenuated or completely blocked. In our approach to indoor positioning, we developed an indoor localization system that minimizes the amount of effort and cost needed by the end user to put the system to use. This indoor localization system detects the user's room-level location within a house or indoor space in which the system has been installed. We combine the use of Bluetooth Low Energy beacons and a smartwatch Bluetooth scanner to determine which room the user is located in. Our system has been developed specifically to create a low-complexity localization system using the Nearest Neighbor algorithm and a moving average filter to improve results. We evaluated our system across a household under two different operating conditions: first, using three rooms in the house, and then using five rooms. The system was able to achieve an overall accuracy of 85.9% when testing in three rooms and 92.106% across five rooms. Accuracy also varied by region, with most of the regions performing above 96% accuracy, and most false-positive incidents occurring within transitory areas between regions. By reducing the amount of processing used by our approach, the end-user is able to use other applications and services on the smartwatch concurrently.

7.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732986

RESUMEN

Most facilities are structured in a repetitive manner. In this paper, we propose an algorithm and its partial implementation for a cellular guide in such facilities without GPS use. The complete system is based on iBeacons-like components, which operate on BLE technology, and their integration into a navigation application. We assume that the user's location is determined with sufficient accuracy. Our main goal revolves around leveraging the repetitive structure of the given facility to optimize navigation in terms of storage requirements, energy efficiency in the cellular device, algorithmic complexity, and other aspects. To the best of our knowledge, there is no prior experience in addressing this specific aim. In order to provide high performance in real time, we rely on optimal saving and the use of pre-calculated and stored navigation sub-routes. Our implementation seamlessly integrates iBeacon communications, a pre-defined indoor map, diverse data structures for efficient information storage, and a user interface, all working cohesively under a single supervision. Each module can be considered, developed, and improved independently. The approach is mainly directed to places, such as passenger ships, hotels, colleges, and so on. Because of the fact that there are "replicated" parts on different floors, stored once and used for multiple routes, we reduce the amount of information that must be stored, thus helping to reduce memory usage and as a result, yielding a better running time and energy consumption.

8.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065976

RESUMEN

With the addition of Bluetooth AOA/AOD direction-finding capabilities in the Bluetooth 5.1 protocol and the introduction of antenna array technology into the Bluetooth platform to further enhance positioning accuracy, Bluetooth has gradually become a research hotspot in the field of indoor positioning due to its standard protocol specifications, rich application ecosystem, and outstanding advantages such as low power consumption and low cost compared to other indoor positioning technologies. However, current indoor positioning based on Bluetooth AOA/AOD suffers from overly simplistic core algorithm implementations. When facing different application scenarios, the standalone AOA or AOD algorithms exhibit weak applicability, and they also encounter challenges such as poor positioning accuracy, insufficient real-time performance, and significant effects of multipath propagation. These existing problems and deficiencies render Bluetooth lacking an efficient implementation solution for indoor positioning. Therefore, this paper proposes a study on Bluetooth AOA and AOD indoor positioning algorithms. Through an analysis of the principles of Bluetooth's newly added direction-finding functionality and combined with research on array signal DOA estimation algorithms, the paper ultimately integrates the least squares algorithm to optimize positioning errors in terms of accuracy and incorporates an anti-multipath interference algorithm to address the impacts of multipath effects in different scenarios. Experimental testing demonstrates that the indoor positioning algorithms applicable to Bluetooth AOA and AOD can effectively mitigate accuracy errors and overcome multipath effects, exhibiting strong applicability and significant improvements in real-time performance.

9.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000900

RESUMEN

In recent years, the technological landscape has undergone a profound metamorphosis catalyzed by the widespread integration of drones across diverse sectors. Essential to the drone manufacturing process is comprehensive testing, typically conducted in controlled laboratory settings to uphold safety and privacy standards. However, a formidable challenge emerges due to the inherent limitations of GPS signals within indoor environments, posing a threat to the accuracy of drone positioning. This limitation not only jeopardizes testing validity but also introduces instability and inaccuracies, compromising the assessment of drone performance. Given the pivotal role of precise GPS-derived data in drone autopilots, addressing this indoor-based GPS constraint is imperative to ensure the reliability and resilience of unmanned aerial vehicles (UAVs). This paper delves into the implementation of an Indoor Positioning System (IPS) leveraging computer vision. The proposed system endeavors to detect and localize UAVs within indoor environments through an enhanced vision-based triangulation approach. A comparative analysis with alternative positioning methodologies is undertaken to ascertain the efficacy of the proposed system. The results obtained showcase the efficiency and precision of the designed system in detecting and localizing various types of UAVs, underscoring its potential to advance the field of indoor drone navigation and testing.

10.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475247

RESUMEN

In today's competitive landscape, manufacturing companies must embrace digital transformation. This study asserts that integrating Internet of Things (IoT) technologies for the deployment of real-time location systems (RTLS) is crucial for better monitoring of critical assets. Despite the challenge of selecting the right technology for specific needs from a wide range of indoor RTLS options, this study provides a solution to assist manufacturing companies in exploring and implementing IoT technologies for their RTLS needs. The current academic literature has not adequately addressed this industrial reality. This paper assesses the potential of Passive UHF RFID-RTLS in Industry 5.0, addressing the confusion caused by the emergence of new 'passive' RFID solutions that compete with established 'active' solutions. Our research aims to clarify the real-world performance of passive RTLS solutions and propose an updated classification of RTLS systems in the academic literature. We have thoroughly reviewed both the academic and industry literature to remain up to date with the latest market advancements. Passive UHF RFID has been proven to be a valuable addition to the RTLS domain, capable of addressing certain challenges. This has been demonstrated through the successful implementation in two industrial sites, each with different types of tagged objects.

11.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475239

RESUMEN

The effective identification and mitigation of non-line-of-sight (NLOS) ranging errors are essential for achieving high-precision positioning and navigation with ultra-wideband (UWB) technology in harsh indoor environments. In this paper, an efficient UWB ranging-error mitigation strategy that uses novel channel impulse response parameters based on the results of a two-step NLOS identification, composed of a decision tree and feedforward neural network, is proposed to realize indoor locations. NLOS ranging errors are classified into three types, and corresponding mitigation strategies and recall mechanisms are developed, which are also extended to partial line-of-sight (LOS) errors. Extensive experiments involving three obstacles (humans, walls, and glass) and two sites show an average NLOS identification accuracy of 95.05%, with LOS/NLOS recall rates of 95.72%/94.15%. The mitigated LOS errors are reduced by 50.4%, while the average improvement in the accuracy of the three types of NLOS ranging errors is 61.8%, reaching up to 76.84%. Overall, this method achieves a reduction in LOS and NLOS ranging errors of 25.19% and 69.85%, respectively, resulting in a 54.46% enhancement in positioning accuracy. This performance surpasses that of state-of-the-art techniques, such as the convolutional neural network (CNN), long short-term memory-extended Kalman filter (LSTM-EKF), least-squares-support vector machine (LS-SVM), and k-nearest neighbor (K-NN) algorithms.

12.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177383

RESUMEN

Accurate altimetry is essential for location-based services in commercial and industrial applications. However, current altimetry methods only provide low-accuracy measurements, particularly in multistorey buildings with irregular structures, such as hollow areas found in various industrial and commercial sites. This paper innovatively proposes a tightly coupled indoor altimetry system that utilizes floor identification to improve height measurement accuracy. The system includes two optimized algorithms that improve floor identification accuracy through activity detection and address the problem of difficult convergence of z-axis coordinates due to indoor coplanarity by applying constraints to iterative least squares (ILS). Two experiments were conducted in a teaching building and a laboratory, including an irregular environment with a hollow area. The results show that our proposed method for identifying floors based on activity detection outperforms other methods. In dynamic experiments, our method effectively eliminates repeated transformations during the up- and downstairs process, and in static experiments, it minimizes the impact of barometric drift. Furthermore, our proposed altimetry method based on constrained ILS achieves significantly improved positioning accuracy compared to ILS, 1D-CNN, and WC. Specifically, in the teaching building, our method achieves improvements of 0.84 m, 0.288 m, and 0.248 m, respectively, while in the laboratory, the improvements are 2.607 m, 0.696 m, and 0.625 m.

13.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112436

RESUMEN

In recent years, crowdsourcing approaches have been proposed to record the WiFi signals annotated with the location of the reference points (RPs) extracted from the trajectories of common users to reduce the burden of constructing a fingerprint (FP) database for indoor positioning. However, crowdsourced data is usually sensitive to crowd density. The positioning accuracy degrades in some areas due to a lack of FPs or visitors. To improve the positioning performance, this paper proposes a scalable WiFi FP augmentation method with two major modules: virtual reference point generation (VRPG) and spatial WiFi signal modeling (SWSM). A globally self-adaptive (GS) and a locally self-adaptive (LS) approach are proposed in VRPG to determine the potential unsurveyed RPs. A multivariate Gaussian process regression (MGPR) model is designed to estimate the joint distribution of all WiFi signals and predicts the signals on unsurveyed RPs to generate more FPs. Evaluations are conducted on an open-source crowdsourced WiFi FP dataset based on a multi-floor building. The results show that combining GS and MGPR can improve the positioning accuracy by 5% to 20% from the benchmark, but with halved computation complexity compared to the conventional augmentation approach. Moreover, combining LS and MGPR can sharply reduce 90% of the computation complexity against the conventional approach while still providing moderate improvement in positioning accuracy from the benchmark.

14.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896550

RESUMEN

In recent years, deep-learning-based WiFi fingerprinting has been intensively studied as a promising technology for providing accurate indoor location services. However, it still demands a time-consuming and labor-intensive site survey and suffers from the fluctuation of wireless signals. To address these issues, we propose a prototypical network-based positioning system, which explores the power of few-shot learning to establish a robust RSSI-position matching model with limited labels. Our system uses a temporal convolutional network as the encoder to learn an embedding of the individual sample, as well as its quality. Each prototype is a weighted combination of the embedded support samples belonging to its position. Online positioning is performed for an embedded query sample by simply finding the nearest position prototype. To mitigate the space ambiguity caused by signal fluctuation, the Kalman Filter estimates the most likely current RSSI based on the historical measurements and current measurement in the online stage. The extensive experiments demonstrate that the proposed system performs better than the existing deep-learning-based models with fewer labeled samples.

15.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631735

RESUMEN

Indoor positioning has become an attractive research topic because of the drawbacks of the global navigation satellite system (GNSS), which cannot detect accurate locations within indoor areas. Radio-based positioning technologies are one major category of indoor positioning systems. Another major category consists of visible light communication-based solutions, as they have become a revolutionary technology for indoor positioning in recent years. The proposed study intends to make use of both technologies by creating a hybrid indoor positioning system that uses VLC and Bluetooth together. The system first collects the initial location information based on VLC proximity, then collects the strongest Bluetooth signals to determine the receiver's location using Bluetooth RSS (received signal strength) trilateration. This has been inspired by the fact that there have not been any studies that make use of both technologies with the same positioning algorithm, which can lead to pretty high accuracy of up to 0.03 m.

16.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37420850

RESUMEN

User location is becoming an increasingly common and important feature for a wide range of services. Smartphone owners increasingly use location-based services, as service providers add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness indicators, and suggestions for nearby points of interest. However, positioning a user indoors is still problematic due to the fading of the radio signal caused by multipath and shadowing, where both have complex dependencies on the indoor environment. Location fingerprinting is a common positioning method where Radio Signal Strength (RSS) measurements are compared to a reference database of previously stored RSS values. Due to the size of the reference databases, these are often stored in the cloud. However, server-side positioning computations make preserving the user's privacy problematic. Given the assumption that a user does not want to communicate his/her location, we pose the question of whether a passive system with client-side computations can substitute fingerprinting-based systems, which commonly use active communication with a server. We compared two passive indoor location systems based on multilateration and sensor fusion using an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate indoor positioning without compromising the user's privacy in a busy office environment.


Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , Comunicación , Bases de Datos Factuales , Privacidad , Teléfono Inteligente
17.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37420883

RESUMEN

The integration of the physical and digital world has become increasingly important, and location-based services have become the most sought-after application in the field of the Internet of Things (IoT). This paper delves into the current research on ultra-wideband (UWB) indoor positioning systems (IPS). It begins by examining the most common wireless communication-based technologies for IPSs followed by a detailed explanation of UWB. Then, it presents an overview of the unique characteristics of UWB technology and the challenges still faced by the IPS implementation. Finally, the paper evaluates the advantages and limitations of using machine learning algorithms for UWB IPS.


Asunto(s)
Internet de las Cosas , Tecnología Inalámbrica , Comunicación
18.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617046

RESUMEN

Magnetic fingerprint has a multitude of advantages in the application of indoor positioning, but as a weak magnetic field, the dynamic range of the data is limited, which exerts direct influence on the positioning accuracy. Aiming at resolving the problem wherein the indoor magnetic positioning results tremendously rest with the magnetic characteristics, this paper puts forward a method based on deep learning to fuse the temporal and spatial characteristics of magnetic fingerprints, to fully explore the magnetic characteristics and to obtain stable and trustworthy positioning results. First and foremost, the trajectory of the acquisition area is extracted by adopting the ameliorated random waypoint model, and the simulation of pedestrian trajectory is completed. Then, the magnetic sequence is obtained by mapping the magnetic data. Aside from that, considering the scale characteristics of the sequence, a scale transformation unit is designed to obtain multi-scale features. At length, the neural network self-attention mechanism is adopted to fuse multiple features and output the positioning results. By probing into the positioning results of dissimilar indoor scenes, this method can adapt to diverse scenes. The average positioning error in a corridor, open area and complex area reaches 0.65 m, 0.93 m and 1.38 m respectively. The addition of multi-scale features has certain reference value for ameliorating the positioning performance.


Asunto(s)
Campos Magnéticos , Peatones , Humanos , Simulación por Computador , Redes Neurales de la Computación , Fenómenos Físicos
19.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36772554

RESUMEN

Traditional magnetic-field positioning methods collect magnetic-field information from each spatial point to construct a magnetic-field fingerprint database. During the positioning phase, real-time magnetic-field measurements are matched to a magnetic-field map to predict the user's location. However, this approach requires a significant amount of time to traverse the entire magnetic-field fingerprint database and does not effectively leverage the magnetic-field sequence's unique patterns to improve the accuracy and robustness of the positioning system. In recent years, the application of deep learning for the indoor positioning of magnetic fields has grown rapidly, especially by using the magnetic-field sequence as a time series and a trained long short-term memory (LSTM) model to predict the position, directly avoiding the time-consuming matching process. However, the training of LSTM is time-consuming, and the degradation problem occurs as the stack of layers increases. This article proposes a temporal convolutional network (TCN)-based magnetic-field positioning system that extracts magnetic-field sequence features by preprocessing them with coordinate transformation, smoothing filtering, and first-order differencing. The proposed method is seamlessly applicable to heterogeneous smartphones. The trained TCN models are compared with the LSTM and gated recurrent unit (GRU) models, showing the high accuracy and robustness of the proposed algorithm.

20.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904877

RESUMEN

Older adults' independent life is compromised due to various problems, such as memory impairments and decision-making difficulties. This work initially proposes an integrated conceptual model for assisted living systems capable of providing helping means for older adults with mild memory impairments and their caregivers. The proposed model has four main components: (1) an indoor location and heading measurement unit in the local fog layer, (2) an augmented reality (AR) application to make interactions with the user, (3) an IoT-based fuzzy decision-making system to handle the direct and environmental interactions with the user, and (4) a user interface for caregivers to monitor the situation in real time and send reminders once required. Then, a preliminary proof-of-concept implementation is performed to evaluate the suggested mode's feasibility. Functional experiments are carried out based on various factual scenarios, which validate the effectiveness of the proposed approach. The accuracy and response time of the proposed proof-of-concept system are further examined. The results suggest that implementing such a system is feasible and has the potential to promote assisted living. The suggested system has the potential to promote scalable and customizable assisted living systems to reduce the challenges of independent living for older adults.


Asunto(s)
Inteligencia Ambiental , Humanos , Anciano , Vida Independiente , Cuidadores , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda