Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Clin Med ; 9(6)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481579

RESUMEN

BACKGROUND: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. MATERIALS AND METHODS: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). RESULTS: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. CONCLUSIONS: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.

2.
Bone ; 57(2): 484-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23954755

RESUMEN

OBJECTIVE: Surgically induced periosteal membrane holds great potential for the treatment of large bone defects representing a simple alternative to combinations of exogenous stem cells, scaffolds and growth factors. The purpose of this study was to explore the biological basis for this novel regenerative medicine strategy in man. METHODS: Eight patients with critical size defects were treated with the induced membrane (IM) technique. After membrane formation 1cm(2) biopsy was taken together with matched, healthy diaphyseal periosteum (P) for comparative analysis. Morphological characteristics, cell composition and growth factor expression were compared. Functional and molecular evaluation of mesenchymal stromal cell (MSC) activity was performed. RESULTS: Both tissues shared similar morphology although IM was significantly thicker than P (p=0.032). The frequency of lymphocytes, pericytes (CD45(-)CD34(-)CD146(+)) and cells expressing markers consistent with bone marrow MSCs (CD45(-/low)CD271(bright)) were 31. 3 and 15.5-fold higher respectively in IM (all p=0.043). IM contained 3-fold more cells per gramme of tissue with a similar proportion of endothelial cells (CD45(-)CD31(+)). Expressed bone morphogenic protein 2, vascular endothelial growth factor and stromal derived factor 1 (SDF-1) are key tissue regeneration mediators. Adherent expanded cells from both tissues had molecular profiles similar to bone marrow MSCs but cells from IM expressed greater than 2 fold relative abundance of SDF-1transcript compared to P (p=0.043). CONCLUSION: The IM is a thick, vascularised structure that resembles periosteum with a cellular composition and molecular profile facilitating large defect repair and therefore may be described as an "induced-periosteum". This tissue offers a powerful example of in situ tissue engineering.


Asunto(s)
Enfermedades Óseas/terapia , Periostio/citología , Andamios del Tejido/química , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Óseas/patología , Diferenciación Celular , Ensayo de Unidades Formadoras de Colonias , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Microfluídica , Persona de Mediana Edad , Periostio/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda