Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nano Lett ; 24(37): 11567-11572, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230046

RESUMEN

Rewarming cryopreserved samples requires fast heating to avoid devitrification, a challenge previously attempted by magnetic nanoparticle-mediated hyperthermia. Here, we introduce Fe3O4@SiO2 nanorods as the heating elements to manipulate the heating profile to ensure safe rewarming and address the issue of uneven heating due to inhomogeneous particle distribution. The magnetic anisotropy of the nanorods allows their prealignment in the cryoprotective agent (CPA) during cooling and promotes subsequent rapid rewarming in an alternating magnetic field with the same orientation to prevent devitrification. More importantly, applying an orthogonal static magnetic field at a later stage could decelerate heating, effectively mitigating local overheating and reducing CPA toxicity. Furthermore, this orientational configuration offers more substantial heating deceleration in areas of initially higher heating rates, therefore reducing temperature variations across the sample. The efficacy of this method in regulating heating rate and improving rewarming uniformity has been validated using both gel and porcine artery models.


Asunto(s)
Nanotubos , Animales , Nanotubos/química , Porcinos , Dióxido de Silicio/química , Crioprotectores/química , Criopreservación/métodos , Calefacción , Campos Magnéticos , Calor , Nanopartículas de Magnetita/química
2.
Small ; : e2404729, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113671

RESUMEN

Development of high-performance, low-cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon-supported ruthenium-copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3 and CuCl2 at 200 A for 10 s produces Ru-Cl residues-decorated Ru nanocrystals dispersed on a CuClx scaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C-3 sample exhibits the best activity in 1 m KOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only -23 and +270 mV to reach 10 mA cm-2, respectively. When RuCu/C-3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm-2, markedly better than that with a mixture of commercial Pt/C+RuO2 (1.59 V). In situ X-ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru-Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high-performance catalysts for electrochemical water splitting.

3.
Environ Sci Technol ; 58(2): 1410-1419, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38158605

RESUMEN

Catalytic oxidation has been considered an effective technique for volatile organic compound degradation. Development of metal foam-based monolithic catalysts coupling electromagnetic induction heating (EMIH) with efficiency and low energy is critical yet challenging in industrial applications. Herein, a Mn18.2-NF monolithic catalyst prepared by electrodeposition exhibited superior toluene catalytic activity under EMIH conditions, and the temperature of 90% toluene conversion decreased by 89 °C compared to that in resistance furnace heating. Relevant characterizations proved that the skin effect induced by EMIH encouraged activation of gaseous oxygen, leading to superior low-temperature redox properties of Mn18.2-NF under the EMIH condition. In situ Fourier transform infrared spectroscopy results showed that skin effect-induced activation of oxidizing species further accelerated the conversion of intermediates. As a result, the Mn18.2-NF monolithic catalyst under EMIH demonstrated remarkable performance for the toluene oxidation, surpassing the conventional nonprecious metal catalyst and other reported monolithic catalysts.


Asunto(s)
Óxidos , Tolueno , Tolueno/química , Óxidos/química , Oxidación-Reducción , Temperatura , Catálisis
4.
J Pept Sci ; 30(9): e3605, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38660732

RESUMEN

On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and ß-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.


Asunto(s)
Péptidos , Técnicas de Síntesis en Fase Sólida , Solventes , Solventes/química , Péptidos/química , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Péptidos beta-Amiloides/química , Tecnología Química Verde , Dimetilformamida/química , Dimetilsulfóxido/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/síntesis química , SARS-CoV-2 , Calefacción , Automatización , Calor
5.
J Environ Manage ; 356: 120644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522274

RESUMEN

Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.


Asunto(s)
Microplásticos , Plásticos , Humanos , Reciclaje , Instalaciones de Eliminación de Residuos
6.
Small ; 19(29): e2302893, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37183271

RESUMEN

A major challenge in Cyclic Swing Separation using flexible adsorbents that have high equilibrium CO2  adsorption capacity is their very low-pressure hysteresis that hinders efficient desorption. Mg-Gallate MOF is such a flexible adsorbent that only begins to release CO2 at its pore closing pressure at 0.08 bar and 30 °C, showing very slow and inefficient desorption in pressure or temperature swing. Therefore, a novel strategy is presented that combines state of art technique Magnetic Induction Heating with a vacuum swing for fast and efficient CO2 desorption from flexible adsorbents at a moderately elevated temperature (70 °C).

7.
Environ Sci Technol ; 57(11): 4598-4607, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36881634

RESUMEN

The position of Ce doping has a significant effect on ambient HCHO storage and catalytic oxidation on layered MnO2. By associating structure and performance, it is unveiled that doping Ce into the in-layered lattice of MnO2 is favorable to the generation of high-valence Mn cations, enhancing the oxidizing ability and capacity, but an opposite influence is displayed by interlayered Ce doping. From the aspect of energy minimization calculated by DFT, in-layered Ce doping is also recommended due to the decreased energies for molecule adsorption and oxygen vacancy formation. As a result, in-layered Ce-doped MnO2 displays exceptional activity in catalyzing the deep oxidation of HCHO and a fourfold higher capacity of ambient HCHO storage than pristine MnO2. The optimal oxide is combined with electromagnetic induction heating to complete the "storage-oxidation" cycle as a promising approach absolutely depending on non-noble oxides and household appliances to realize the long-acting removal of indoor HCHO at room temperature.


Asunto(s)
Compuestos de Manganeso , Óxidos , Óxidos/química , Compuestos de Manganeso/química , Oxidación-Reducción , Oxígeno
8.
Int J Hyperthermia ; 40(1): 2280448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37987751

RESUMEN

AIM: The use of magnetic carbon nanotubes for multi-modal cancer treatment, incorporating both hyperthermia and drug delivery functions, has drawn substantial interest. Yet, the present method of regulating hyperthermia temperature involves manually adjusting the magnetic field intensity, adding to the complexity and difficulty of clinical applications. This study seeks to design novel magnetic carbon nanotubes capable of self-temperature regulation, and investigate their drug loading and release characteristics. METHODS: Using the co-precipitation method, we synthesized magnetic carbon nanotubes with a Curie temperature of 43 °C. A comprehensive investigation was conducted to analyze their morphology, crystal structure, and magnetic characteristics. To enhance their functionality, chitosan and sodium alginate modifications were introduced, enabling the loading of the antitumor drug doxorubicin hydrochloride (DOX) into these magnetic carbon nanotubes. Subsequently, the loading and release properties of DOX were investigated within the modified magnetic nanotubes. RESULTS: Under alternating magnetic field, magnetic carbon nanotubes exhibit self-regulating properties by undergoing a magnetic phase transition, maintaining temperatures around 43 °C as required for hyperthermia. On the other hand, during magnetic induction heating, the release percentage of DOX reached 23.5% within 2 h and 71.7% within 70 h at tumor pH conditions, indicating their potential for sustained drug release. CONCLUSIONS: The prepared magnetic carbon nanotubes can effectively regulate the temperature during hyperthermia treatment while ensuring controlled drug release, which presents a promising method for preparing nanomaterials that synergistically enhance magnetic hyperthermia and chemotherapy drugs.


Asunto(s)
Nanotubos de Carbono , Humanos , Liberación de Fármacos , Calefacción , Fiebre , Hipertermia , Campos Magnéticos
9.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902156

RESUMEN

The paper introduces spatially stable Ni-supported bimetallic catalysts for CO2 methanation. The catalysts are a combination of sintered nickel mesh or wool fibers and nanometal particles, such as Au, Pd, Re, or Ru. The preparation involves the nickel wool or mesh forming and sintering into a stable shape and then impregnating them with metal nanoparticles generated by a silica matrix digestion method. This procedure can be scaled up for commercial use. The catalyst candidates were analyzed using SEM, XRD, and EDXRF and tested in a fixed-bed flow reactor. The best results were obtained with the Ru/Ni-wool combination, which yields nearly 100% conversion at 248 °C, with the onset of reaction at 186 °C. When we tested this catalyst under inductive heating, the highest conversion was observed already at 194 °C.


Asunto(s)
Dióxido de Carbono , Níquel , Calefacción , Dióxido de Silicio
10.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214393

RESUMEN

Different means of residual stress distribution monitoring in magnetic rods are illustrated in this paper, through measurements of permeability, magnetoelastic uniformity using two different setups, sound velocity, and eddy currents. The effectiveness of these techniques was assessed through the stress monitoring of the same magnetic rod, suffering residual stresses in two known volumes caused by controlled hammering. Furthermore, rehabilitation has been achieved by means of stress annihilation, achieved by localized induction heating. As a result, the magnetoelastic and sound velocity uniformity measurements are more appropriate for the monitoring of localized residual stresses, while eddy current measurements are useful for the monitoring of the geometrical deformation.


Asunto(s)
Imanes , Acero , Calefacción , Magnetismo , Fenómenos Físicos
11.
Bioelectromagnetics ; 42(4): 329-335, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33846994

RESUMEN

The effects of exposure to intermediate-frequency electromagnetic fields (IF-EMFs) during pregnancy on birth outcomes are uncertain. We investigated the association between the use of induction heating (IH) cookers, which are major sources of IF-EMFs, during pregnancy and preterm birth (PTB), low birth weight (LBW), small-for-gestational-age (SGA), and birth weight, using data from a prebirth cohort study in Japan. Study participants were 1,565 mothers with singleton pregnancies and the babies born from these pregnancies. We collected the data presented here using self-administered questionnaires. An adjustment was made for maternal age, region of residence, number of children, family structure, maternal education, maternal employment, maternal alcohol intake, smoking during pregnancy, maternal body mass index, baby's sex, and gestational age at birth. IH cooker use during pregnancy was independently associated with a reduced risk of PTB: the adjusted odds ratio was 0.28 (95% confidence interval: 0.07-0.78). IH cooker use during pregnancy was not associated with LBW, SGA, or birth weight. This is the first study to show that IH cooker use during pregnancy is independently inversely associated with PTB.


Asunto(s)
Salud Infantil , Nacimiento Prematuro , Niño , Estudios de Cohortes , Femenino , Calefacción , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Embarazo , Nacimiento Prematuro/epidemiología , Factores de Riesgo
12.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34450987

RESUMEN

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Humanos , Hipertermia , Magnetismo , Neoplasias/terapia , Reproducibilidad de los Resultados
13.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917461

RESUMEN

One of the biggest challenges of fused deposition modeling (FDM)/fused filament fabrication (FFF) 3D-printing is maintaining consistent quality of layer-to-layer adhesion, and on the larger scale, homogeneity of material inside the whole printed object. An approach for mitigating and/or resolving those problems, based on the rapid and reliable control of the extruded material temperature during the printing process, was proposed. High frequency induction heating of the nozzle with a minimum mass (<1 g) was used. To ensure the required dynamic characteristics of heating and cooling processes in a high power (peak power > 300 W) heating system, an indirect (eddy current) temperature measurement method was proposed. It is based on dynamic analysis over various temperature-dependent parameters directly in the process of heating. To ensure better temperature measurement accuracy, a series-parallel resonant circuit containing an induction heating coil, an approach of desired signal detection, algorithms for digital signal processing and a regression model that determines the dependence of the desired signal on temperature and magnetic field strength were proposed. The testbed system designed to confirm the results of the conducted research showed the effectiveness of the proposed indirect measurement method. With an accuracy of ±3 °C, the measurement time is 20 ms in the operating temperature range from 50 to 350 °C. The designed temperature control system based on an indirect measurement method will provide high mechanical properties and consistent quality of printed objects.

14.
Int J Therm Sci ; 1592021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38872874

RESUMEN

Recently, magnetic nanoparticles (MNPs) based hyperthermia therapy has gained much attention due to its therapeutic potential in biomedical applications. This necessitates the development of numerical models that can reliably predict the temporal and spatial changes of temperature during the therapy. The objective of this study is to develop a comprehensive numerical model for quantitatively estimating temperature distribution in the ferrofluid system. The reliability of the numerical model was validated by comparative analysis of temperature distribution between experimental measurements and numerical analysis based on finite element method. Our analysis showed that appropriate incorporation of the heat effects of electromagnetic energy dissipation as well as thermal radiation from the ferrofluid system to the surrounding in the modeling resulted in the estimation of temperature distribution that is in close agreement with the experimental results. In summary, our developed numerical model is useful to evaluate the thermal behavior of the ferrofluid system during the process of magnetic fluid hyperthermia.

15.
IEEE Trans Magn ; 57(9)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34538882

RESUMEN

Hyperthermia therapy (HT) is becoming a well-recognized method for the treatment of cancer when combined with radiation or chemotherapy. There are many ways to heat a tumor and the optimum approach depends on the treatment site. This study investigates a composite ferromagnetic surgical implant inserted in a tumor bed for the delivery of local HT. Heating of the implant is achieved by inductively coupling energy from an external magnetic field of sub-megahertz frequency. Implants are formed by mechanically filling a resected tumor bed with self-polymerizing plastic mass mixed with small ferromagnetic thermoseeds. Model implants were manufactured and then heated in a 35 cm diameter induction coil of our own design. Experimental results showed that implants were easily heated to temperatures that allow either traditional HT (39-45°C) or thermal ablation therapy (>50°C) in an external magnetic field with a frequency of 90 kHz and amplitude not exceeding 4 kA/m. These results agreed well with a numerical solution of combined electromagnetic and heat transfer equations solved using the finite element method.

16.
J Food Sci Technol ; 58(8): 3049-3055, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34294967

RESUMEN

Hydro-distillation assisted by electromagnetic induction heating (H-EMIH) was employed to extract essential oil (EO) from Algerian fresh orange peels (Citrus sinensis). H-EMIH was compared with conventional hydro-distillation (C-H) in terms of hydro-distillation time, yield, chemical composition and, antibacterial and antioxidant activities. It was found that extraction of EO with H-EMIH gave a maximal yield of 3.77% in 35 min whereas C-H gave 2.72% in 41 min. The extracts obtained by both techniques were analyzed by Gas Chromatography-Mass Spectrometry. Their chemical compositions are relatively similar; limonene and ß-myrcene were found as the principal compounds. The antioxidant activity results demonstrated that EO extracted by H-EMIH showed the highest capacity of radical scavenging than EO isolated by C-H process. Otherwise, it was found that EO extracted by H-EMIH exhibited an antimicrobial potential slightly higher than that extracted by C-H.

17.
Int J Hyperthermia ; 37(1): 130-136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31986930

RESUMEN

Background: Non-contact induction heating (NCIH) is a noninvasive treatment modality that can be used to cause thermal damage to bacterial biofilms on a metal implant surface in the context of a prosthetic joint infection. The purpose of this study was (1) to determine the effectiveness of NCIH on killing Staphylococcus aureus from biofilm and (2) to determine the possible synergistic effect of NCIH and cocktails of antibiotics and N-acetylcysteine (NAC).Methods:Staphylococcus aureus biofilms were grown on titanium alloy (Ti6Al4V) coupons. These coupons were heated to 50 °C, 60 °C, 70 °C, 80 °C, and 90 °C for 3.5 min and subsequently exposed to cocktails of vancomycin, rifampicin and NAC at clinically relevant concentrations over 24 h.Results: In the control group without induction heating, 2.2*107 colony forming units (CFU)/cm2 were observed. At 50 °C, 60 °C, 70 °C, 80 °C, and 90 °C, a reduction of 0.3-log, 3.9-log, 4.2-log, 4.3-log, and 6.6-log CFU/cm2 were observed, respectively. There was synergy between antibiotics and induction heating that resulted in less than 100 CFU/cm2 remaining after 3.5 min at 60 °C, and exposure to vancomycin and rifampicin. Total eradication was observed at 80 °C. Total eradication was also observed at 60 °C and a cocktail of antibiotics with NAC.Conclusion: Induction heating of titanium alloy coupons is effective for the reduction of bacterial load in vitro in S. aureus biofilms. Induction heating and cocktails of antibiotics and NAC have a synergistic effect that results in the total eradication of the biofilm at 60 °C and higher for clinically relevant concentrations of vancomycin, rifampicin and NAC.


Asunto(s)
Acetilcisteína/metabolismo , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Calefacción/métodos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Humanos
18.
Eur Spine J ; 29(5): 1147-1158, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200495

RESUMEN

PURPOSE: To evaluate the safety and efficacy of a system aiming to correct scoliosis called "electromagnetically controlled shape-memory alloy rods" (EC-SMAR) used in a rabbit model. METHODS: We heat-treated shape-memory alloy (SMA) rods to achieve a transition temperature between 34 and 47 °C and a C-shape austenite phase. We then developed a water-cooled generator capable of generating an alternating magnetic field (100 kHz) for induction heating. We next studied the efficacy of this system in vitro and determined some parameters prior to proceeding with animal experiments. We then employed a rabbit model, in which we fixed a straight rod along the spinous processes intraoperatively, and conducted induction heating postoperatively every 4 days for 1 month, while performing periodic X-ray assessments. RESULTS: Significant kyphotic deformations with Cobb angles of about 45° (p < 0.01) were created in five rabbits, and no complications occurred throughout the experiment. The rabbits are still very much alive and do not show any signs of discomfort. CONCLUSIONS: This is the first system that can modulate spinal deformation in a gradual, contactless, noninvasive manner through electromagnetic induction heating applied to SMA alloy rods. Although this study dealt with healthy spines, it provides promising evidence that this device also has the capacity to correct human kyphosis and even scoliosis in the future. These slides can be retrieved under Electronic Supplementary Material.


Asunto(s)
Escoliosis , Aleaciones con Memoria de Forma , Aleaciones , Animales , Níquel , Conejos , Escoliosis/cirugía , Columna Vertebral , Titanio
19.
J Therm Biol ; 91: 102644, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32716885

RESUMEN

Recent progress in nanotechnology has advanced the development of magnetic nanoparticle (MNP) hyperthermia as a potential therapeutic platform for treating diseases. Due to the challenges in reliably predicting the spatiotemporal distribution of temperature in the living tissue during the therapy of MNP hyperthermia, critical for ensuring the safety as well as efficacy of the therapy, the development of effective and reliable numerical models is warranted. This article provides a comprehensive review on the various mathematical methods for determining specific loss power (SLP), a parameter used to quantify the heat generation capability of MNPs, as well as bio-heat models for predicting heat transfer phenomena and temperature distribution in living tissue upon the application of MNP hyperthermia. This article also discusses potential applications of the bio-heat models of MNP hyperthermia for therapeutic purposes, particularly for cancer treatment, along with their limitations that could be overcome.


Asunto(s)
Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Modelos Teóricos , Neoplasias/terapia , Humanos , Neoplasias/fisiopatología , Termodinámica
20.
Molecules ; 25(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046303

RESUMEN

Iron-containing particulate catalysts of 0.1-1 µm size were prepared by wet and ball-milling procedures from common salts and characterized by FTIR, TGA, UV-Vis, PXRD, FEG-SEM, and XPS analyses. It was found that when the wet method was used, semi-spherical magnetic nanoparticles were formed, whereas the mechanochemical method resulted in the formation of nonmagnetic microscale needles and rectangles. Catalytic activity of the prepared materials in the oxidation of 1-phenylethanol to acetophenone was assessed under conventional heating, microwave (MW) irradiation, ultrasound (US), and oscillating magnetic field of high frequency (induction heating). In general, the catalysts obtained by wet methods exhibit lower activities, whereas the materials prepared by ball milling afford better acetophenone yields (up to 83%). A significant increase in yield (up to 4 times) was observed under the induction heating if compared to conventional heating. The study demonstrated that MW, US irradiations, and induction heating may have great potential as alternative ways to activate the catalytic system for alcohol oxidation. The possibility of the synthesized material to be magnetically recoverable has been also verified.


Asunto(s)
Acetofenonas/química , Alcoholes Bencílicos/química , Hierro/química , Nanopartículas de Magnetita/química , Catálisis/efectos de la radiación , Calefacción , Microondas , Oxidación-Reducción , Termodinámica , Ondas Ultrasónicas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda